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Abstract 

Expression of the cellular prion protein (PrP
C
) is crucial for the development of prion 

diseases. Resistance to prion diseases can result from reduced availability of the prion protein 

or from amino acid changes in the prion protein sequence. We propose here that increased 

production of a natural PrP α-cleavage fragment, C1, is also associated with resistance to 

disease. We show, in brain tissue, that ARR homozygous sheep, associated with resistance to 

disease, produced PrP
C
 comprised of 25% more C1 fragment than PrP

C
 from the disease-

susceptible ARQ homozygous and highly susceptible VRQ homozygous animals. Only the
 

C1 fragment derived from the ARR allele inhibits in-vitro fibrillisation of other allelic PrP
C
 

variants. We propose that the increased α-cleavage of ovine ARR PrP
C
 contributes to a 

dominant negative effect of this polymorphism on disease susceptibility. Furthermore, the 

significant reduction in PrP
C 

β-cleavage product C2 in sheep of the ARR/ARR genotype 

compared to ARQ/ARQ and VRQ/VRQ genotypes, may add to the complexity of genetic 

determinants of prion disease susceptibility. 

 

Abbreviations 

PrP
C 

, cellular prion protein; CNS, central nervous system; CJD, Creutzfeldt-Jakob disease; 

CWD, chronic wasting disease; BSE, bovine spongiform encephalopathy; PrP
Sc

, disease 

associated misfolded prion protein; NPU, Neuropathogenesis Unit; AHVLA, Animal Health 

and Veterinary Laboratories Agency; PMSF, phenylmethanesulfonylfluoride; NEM, N- 

ethylmaleimide; PNGase F, Peptide:N-glycosidase F; TBS, Tris-buffered saline; TBST, TBS-

Tween; ALP, Alkaline Phosphatase; IPTG, isopropylthio-β-galactoside; HPLC, High pressure 

liquid chromatography; MES, 2-(N-Morpholino)ethanesulfonic acid sodium salt; ThT, 

Thioflavin T. 

 

Keywords:  

prion; transmissible spongiform encephalopathy; fibrillisation; protein-cleavage 

 

1. Introduction 

The prion protein, PrP
C
,
 
is encoded by the PRNP gene and is expressed at high levels in the 

central nervous system (CNS) and to a lesser degree in peripheral tissues in all mammalian 

species. The biological function of PrP
C 

is not clear, but roles in promoting cell survival, 

signal transduction and alleviating oxidative stress have been suggested [1-3]. PrP
C
 is 

essential for the pathogenesis of a group of disorders called prion diseases, also known as 
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transmissible spongiform encephalopathies (TSEs). TSEs are fatal, neurodegenerative 

protein-misfolding diseases caused by unconventional infectious agents, often referred to as 

prions [4,5]. Naturally occurring prion diseases are Creutzfeldt-Jakob disease (CJD) in man, 

chronic wasting disease (CWD) in deer, bovine spongiform encephalopathy (BSE) in cattle 

and scrapie in sheep. A marker of prion disease infection is the slow accumulation of a 

protease-resistant isoform of the prion protein, designated PrP
Sc

, in the CNS and the 

peripheral lymphoid system [6]. PrP
Sc

 is converted from PrP
C
 by a seeded polymerisation 

mechanism leading to a range of morphologically different aggregates, ranging from fibrils to 

diffuse amyloid plaques [7]. The process can be mimicked in vitro, whereby recombinant 

PrP
C
 can be induced to transit from a soluble alpha-helical state into insoluble, highly ordered 

amyloid fibrils by a nucleation-dependent mechanism [8]. Most mammalian species exhibit 

PRNP gene polymorphisms which encode PrP
C
 protein sequence variants and several of these 

have been shown to modulate susceptibility, incubation period or pathology of prion diseases 

[9]. One of the best described genetic associations between PRNP gene polymorphisms (PrP
C
 

variants) and prion diseases applies to sheep scrapie. Although the genetic determinants of 

susceptibility to scrapie infection and incubation period length in sheep are highly complex, 

involving more than ten polymorphic positions, three substitutions of major importance are in 

codons 136, 154 and 171. Ovine PrP
C
 variants are therefore described by the amino acid 

expressed at these codons, such as A136R154R171 (ARR), ARQ and VRQ etc. [10-12]. It is still 

a matter of debate exactly how PrP
C 

amino acid substitutions cause differences in disease 

susceptibility and pathogenesis. The efficiency of in-vitro conversion of PrP
C 

to PrP
Sc

 has 

been shown to vary for different PrP
C
 variants [13-15] and it has been suggested that this 

variation is linked to differential protein stability [14], but it is likely that in vivo additional 

factors contribute to disease phenotype differences. 

Ovine PrP
C
 is expressed in brain as di- (33-35 kDa), mono- (30-32 kDa) or un-glycosylated 

(27 kDa) protein in variable ratios. Cellular processing of PrP
C 

involves two well-documented 

proteolytic cleavage events. For ovine PrP
C
, α-cleavage of the peptide-bond between His114 

and Val115 [18,19] creates two polypeptides, of which C1 is the C-terminal fragment that 

resides alongside full length PrP
C 

on the cell membrane [20]. C1 also appears in di- (25-

27kDa) mono- (21-23kDa) and un-glycosylated (17kDa) forms [21-23]. The majority of the 

corresponding N-terminal, 9kDa N1 fragment is released from the cell by shedding [24]. The 

products of α-cleavage of PrP
C
 have been observed in the brains of a variety of mammals 

with diverse susceptibility to TSE diseases [20-22, 25-27]. An alternative β-cleavage, at Gly92 

of ovine PrP
C
, generates the fragments C2 and N2, but occurs at a much lower level in 
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healthy animals than α-cleavage and appears to be a response to oxidative stress [28]. It is a 

long held view that prion disease incubation periods are correlated with the amount of PrP
C
. 

This has been demonstrated in various transgenic mouse models in which incubation periods 

of experimentally induced prion diseases are inversely correlated with the PrP
C
 protein 

expression [29, 30]. However, often in these studies the levels of full-length PrP
C
 and its 

proteolytic fragments have not been differentiated. Recently it was shown conclusively that 

the C1 fragment itself does not convert into a protease-resistant isoform in scrapie challenged 

transgenic mice expressing only C1. Furthermore, when the C1 fragment was co-expressed 

with full-length PrP
C
 incubation periods were extended [31]. It has also been shown that cell 

lines with naturally higher levels of α-cleavage show enhanced resistance to prion infection 

[32]. This raises the possibility that PrP
C
 cleavage may control disease by either reducing the 

amount of full length PrP
C
 available for conversion or by producing different levels of the C1 

fragment, which would act as inhibitory modulators of conversion. In sheep, this control is 

likely to be associated with PRNP genotype. We have found that proteolytic processing of 

ovine PrP
C
 is PRNP genotype dependent, with increased amounts of the C1 fragment and 

decreased amounts of the C2 fragment in brain tissue from sheep associated with resistance to 

scrapie. Furthermore, we have shown that a recombinant protein comprising the C1 fragment 

derived from the ovine ARR variant has the ability to inhibit or delay fibrillisation of full 

length PrP, a key step in the formation of disease associated amyloid. 

 

2. Material and methods 

2.1 Brain tissue preparations 

Sheep used in this study were obtained from the Roslin Institute Cheviot flock (formerly 

known as the NPU Cheviot flock) [33] and from a scrapie free flock (AHVLA)  (both 

together in this paper called Roslin sheep) or from random sampling at Norwegian abattoirs 

(in this paper called Norwegian sheep). All sheep were arginine homozygous in codon 154 

(RR154). The VRQ/VRQ, VRQ/ARQ and ARQ/ARQ genotypes are collectively referred to as 

QQ171, the ARR/ARR genotype as RR171. For some Roslin sheep we retained 1 cm mid-

sectional slices from the left side of the brain, from which cores of approximately 5 mm 

diameter were removed from the cortex, cerebellum, medulla, thalamus, hypothalamus, mid 

brain and pons. Following post mortem, all tissues were immediately stored at -70 °C. 

Tissues were manually homogenised in lysis buffer (5 % NP-40 (v/v), 12.1 mM Sodium 

deoxycholate in PBS) with protease inhibitors (10 µM PMSF, 10 µM NEM or Complete Mini 

Tablets, Roche) to make a 10 % (w/v) homogenate. The homogenate was clarified by 
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centrifugation at 2000 rpm at 4 ºC for 10 minutes, the supernatant was collected, flash frozen 

and stored at -20 °C until further analysis. 

2.2 Antibodies 

Anti-PrP monoclonal antibodies BC6, JB10 and FH10 against PrP epitopes 136-154, 216-225 

and 198-207, respectively were kindly gifted by Dr Sandra McCutcheon, The Roslin 

Institute. For immunoblotting, antibodies were used at the following final concentrations in 

0.5% (v/v) blocking reagent (Western Blocking Reagent 10 %, Roche in Tris buffered saline, 

pH 7.5); BC6 0.1 µg/ml, JB10 0.9 µg/ml, FH10 0.5 µg/ml, P4 (Biopharm) 0.2 µg/ml,  6H4 

(Biopharm) 0.1 µg/ml, Anti- Murine α-tubulin IgG1 (Fisher Scientific) 0.01 µg/ml, 

horseradish-peroxidase-conjugated rabbit anti-mouse (Stratech, UK) 0.08 µg/ml. Bar224 

(Bertin Pharma, SpiBio, France) which binds to the globular domain of PrP was used at a 

concentration of 1 µg/ml, diluted in TBS with 1% fat-free dry milk, overnight at 4°C.  

2.3 Deglycosylation  

Brain homogenate (10 % w/v) was denatured at 100 ºC for 10 minutes and incubated with 

0.125 U of peptide N-glycoside F (PNGase F kit, New England Biolabs) for 2 hours at 37 ºC 

according to manufacturer’s instructions. Deglycosylated protein was isolated using methanol 

precipitation and stored at -20 ºC. Before immunoblotting, the protein was pelleted by 

centrifugation at 10,400 g for 10 minutes. Prior to electrophoresis, samples were boiled 

directly in NuPAGE (Invitrogen) sample buffer supplemented with a reducing agent 

(Invitrogen).  

2.4 SDS PAGE –Immunoblotting 

Deglycosylated protein was denatured at 70 ºC for 10 minutes and separated by 12% 

NuPAGE Bis-Tris gels (Invitrogen) or 12% Criterion gels (BioRad). Molecular markers 

spanning 20-220 kDa were used for size reference (MagicMarker XP Western protein 

Standard, Invitrogen) and electrophoresis was performed in an Xcell SureLock tank at 150 V 

for 1 hour using a NuPAGE kit (Invitrogen) or with the BioRad Criterion system (BioRad). 

Proteins were transferred onto poly(vinylidenedifluoride) membranes (Millipore or GE 

Healthcare) at 25 V for 1 hour, after which the membranes were washed with TBS (50 mM 

Tris, 150 mM NaCl, pH 7.5). The membranes were blocked using 1 % (v/v) blocking solution 

for 1 hour at room temperature with agitation followed by incubation with anti-PrP antibodies 

diluted in 0.5 % (v/v) blocking solution under the same conditions.  Membranes were washed 

with TBST (0.1 % Tween 20 in TBS) followed by 0.5 % (v/v) blocking solution. The 

membranes were incubated in horseradish-peroxidase-conjugated rabbit anti-mouse (Stratech, 

UK) or ALP conjugated goat-anti-mouse IgG (BioRad) diluted at 1:10000 in 0.5 % (v/v) 
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block for 75 minutes. The membranes were washed in TBST and proteins were visualized 

using activated chemiluminescence (SuperSignal West Dura Extended Duration Substrate, 

Thermo Scientific) Lumi-Film Chemiluminescent Detection Film (Roche) or fluorescence 

(ALP substrate, ECF, GE Healthcare), recorded with a variable mode imager (Typhoon, GE 

Healthcare), when secondary antibodies labeled with ALP were used. For quantitative 

analysis, blots were scanned and the net intensity of manually selected protein bands 

representative of full length PrP
C
, C1 and C2 were measured by use of Kodak MI software. In 

the case of fluorescence scans, the Image Quant Utility software (GE Healthcare) was used. 

The combined signal of all bands for each sample was taken as 100% and each band 

calculated as a percentage of the total signal. For each animal deglycosylation, 

immunoblotting and densitometry were performed at least twice and any further analysis was 

based on the average C1 value. 

2.5 Production of C1 recombinant proteins  

We have previously published details of full-length ovine PrP constructs [34]. Briefly, PrP 

open reading frame from codons 25-233 was inserted into a pTrcHis B vector and expressed 

in Escherichia coli strain Rosetta (DE3). To produce truncated recombinant PrP proteins 

representative of the C1 fragment the open reading frame between codons 115 and 234 of 

ovine PRNP from three genotypes (ARR/ARR, VRQ/VRQ and ARQ/ARQ) was amplified 

by PCR from genomic DNA with oligonucleotide primers Nde_C1F 

(CATCATATGGTGGCAGGAGCTGCTG) and BamH1_C1R 

(AGTGGATCCTCAACTTGCCCCCCTTTG) and high fidelity Taq polymerase. The 

fragments were cloned into the PET 19b vector (Invitrogen) and transformed into Escherichia 

coli strain BL21 (DE3). The sequences of all plasmid constructs were confirmed by 

sequencing with T7 oligonucleotide (TAATACGACTCACTATAGG) on an AB3130 Genetic 

Analyzer with the BigDye® terminator v3.1 cycle sequencing kit (Applied Biosystems, 

USA). E.coli were cultured in terrific broth (TB) to an optical density of between 0.6-0.8 and 

PrP expression was induced by addition of isopropyl β-D-1-thiogalactopyranoside (IPTG) to 

a final concentration of 1 mM. Bacterial lysis was performed using lysozyme and inclusion 

bodies containing recombinant proteins were isolated and stored at -20 ˚C - the full details of 

which are described in Kirby et al (2006) [34]. Inclusion bodies were solubilised in a urea 

based buffer (urea 8 M, disodium hydro-phosphate 0.1 M, Tris-base 10 µM, pH8 with 2-

mercaptoethanol). The full method for purification of these recombinant proteins has been 

previously published [35]. Briefly, recombinant proteins were first purified by nickel ion 

affinity chromatography, followed by desalting using a HiPrep desalting column. Proteins 
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were oxidised overnight and further purified by reverse phase HPLC chromatography. 

Purified protein was lyophilised and stored at -20 ˚C. All protein variants were expressed and 

purified on two separate occasions to ensure reproducibility of results. 

2.6 Circular Dichroism 

Measurements of purified protein (~0.5 mg/ml) in 50 mM sodium acetate were made using a 

Jasco J-710 spectropolarimeter with a path length of 0.2 mm. Readings were collected from 

260 nm to 200 nm, with 20 scans repeated for each reading at a rate of 100 nm/min. 

Observations were made about protein secondary structure by comparison of the spectral 

output with proteins of known secondary structure. 

2.7 Fibrillisation of recombinant C1  

Fibrillisation followed a method previously published [36, 37]. In summary, lyophilised full 

length and C1 rPrP were reconstituted in 6 M guanidine-HCl (pH 6.0) to a concentration of 3 

mg/ml. Reaction mixtures contained 2 M guanidine-HCL, 50 mM MES, 10 mM thiourea and 

100 µg/ml PrP/C1. For assays with two proteins, each was added to a final concentration of 

50 µg/ml. To monitor fibrillisation kinetics, Thioflavin (ThT) was added (10 µM). 167 µL of 

reaction mix was dispensed into each well of a 96 well plate along with 3 Teflon balls (2.381 

mm diameter, The Precision Plastic Ball Company). The plate was incubated with shaking, 

900rpm at 37 °C in a fluorescent plate reader (Fluoroskan Ascent, Thermo Scientific). ThT 

fluorescence was measured every 5 minutes for 24 hours (excitation at 444 nm, emission at 

485 nm). Data were analysed and lag times calculated as described in Graham et al 2010 [37]. 

To account for background fluorescence, fibrillisation reactions were set up in the absence of 

PrP protein. The number of repeat fibrillisation assays (n) varied for each protein variant. For 

analysis of fibrils by other methods, separate reactions were set-up without ThT. Post-

fibrillisation, these reactions were dialysed into 10 mM sodium acetate and stored at 4 °C 

2.9 Maturation and PK digestion of fibrils  

This protocol was followed directly from Breydo et al [36]. Proteins were visualised by gel 

electrophoresis (12 % NuPAGE Bis-Tris gel, Invitrogen) and silver staining. 

2.8 Electron Microscopy  

Formvar coated copper grids were placed onto a 50 μl drop of fibril preparation (60 µg/mL in 

10 mM sodium acetate, pH 5). After 45 seconds, the grid was removed, touched to a filter 

paper to remove excess fluid, and then placed onto a drop of filtered 2% aqueous 

phosphotungstic acid for 2 minutes. Grids were then air dried before storage and examined 

using a Jeol 1200EX transmission electron microscope 

2.9 Statistical analysis  
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For analysis of all brain derived PrP
C
, the non-parametric Mann-Whitney U test was applied. 

For in-vitro assays, the one-tailed student T-test was applied. 

3. Results 

3.1 The quantity of PrP
C
 C1-fragment relative to total PrP

C
 is consistent in different areas of 

ovine brain.  

To assess quantities of the C1 fragment in specific brain areas, we measured levels of the 

PrP
C 

C1 fragment relative to full length PrP
C 

by semi-quantitative analysis of Western blots 

using anti-PrP antibodies BC6 (Figure 1) or Bar224. Cortex, cerebellum, midbrain, thalamus, 

hypothalamus, medulla,  pons  were compared for five Roslin sheep two of ARR/ARR and 

three of ARQ/ARQ genotypes. A representative Western blot showing relative C1 levels in 

different brain regions of an ARQ homozygous sheep is shown in Figure 1A. Relative C1 

levels varied considerably between animals (e.g. levels of C1 in the cortex ranged from 12-48 

%), however, the ranking of percentage C1 levels between areas within a single animal 

appeared consistent; therefore we normalised C1 levels for all brain areas against the cortex 

(cortex = 1) for each animal. Applying the non-parametric Mann-Whitney U-test, no 

significant differences in relative C1 levels were found between cortex and cerebellum (0.98 

± 036), thalamus (1.36 ± 0.74), hypothalamus (1.33 ± 0.84), mid brain (1.64 ± 1.36) medulla 

(1.09 ± 0.73) and pons (1.17 ± 0.94). These data are summarised in Figure 1B.  

To confirm that C1 levels are consistent across all brains areas in animals out-with our flock, 

we tested cortex, cerebellum and brainstem in a further four unrelated homozygous 

Norwegian sheep. C1 levels in cerebellum (0.78 ± 0.23) and brainstem (0.9 ± 0.54), relative 

to cortex, did not differ significantly from the Roslin sheep (data not shown). Overall, we 

found that relative C1 levels were similar across different brain regions for individual animals 

but our data suggested that relative C1 levels may vary depending on PRNP genotype. We 

therefore measured relative C1 levels as a function of PRNP genotype. 

  

3.2 The relative abundance of the PrP
c
 C1 fragment in ovine cortex varies with the PRNP 

genotype.  

We increased the number of Roslin sheep samples per genotype to a total of 11 ARR/ARR, 

13 ARQ/ARQ and 5 VRQ/VRQ. These genotypes of sheep were selected because they are 

associated with varying susceptibility to classical scrapie. We focused on relative C1 levels in 

the cortex only, since we have shown that this area is representative for most of the brain. In 

individual animals, relative levels of the C1 fragment ranged from 14% to 77% of total PrP
C
. 

A representative Western blot of PrP
C
 in the cortex of VRQ, ARQ and ARR homozygous 
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sheep is shown in Figure 2(A) and illustrates the differences in C1 levels between sheep of 

different PRNP genotype. Similar analyses were repeated for each animal and we calculated 

average C1 levels within genotype groups. Animals of the ARR/ARR genotype – associated 

with resistance to classical scrapie – had a mean relative C1 level of 52.6% (SD ± 11.9) 

which was significantly higher than the mean C1 level of 27.7% (SD ± 14.5) for ARQ/ARQ 

(p < 0.0001) and the mean C1 level of 32.6% (SD ± 8.8) for VRQ/VRQ sheep (p ≤ 0.002). 

These data are shown graphically in Figure 2B. Since there was no significant difference 

between ARQ/ARQ and VRQ/VRQ animals (from here on designated QQ171, whilst ARR 

homozygous sheep are designated RR171), which are both associated with susceptibility to 

classical scrapie, we combined data from these genotype groups. 

It has previously been reported in several species that relative C1 levels in the brain were 

around 50% of total PrP
C
 [20-22, 25], in accordance with our ARR/ARR sheep. To confirm 

that the unexpectedly low mean C1 level in our 18 QQ171 sheep (29.1% SD ± 13) was not 

specific to these animals, we compared them to five Norwegian QQ171 sheep, which showed a 

mean relative C1 level of 27.8% (SD ± 7.5). Analysis with two additional antibodies FH10 

and JB10  replicated the pattern seen with BC6 and Bar224 making it highly unlikely that any 

of these results were significantly influenced by the choice of antibody. We conclude that 

steady state levels of the C1 fragment relative to total PrP
C
 were 1.8 times (1.4 - 2.1, 95% 

confidence interval) higher in the cortex of RR171 homozygotes (n = 11) compared to QQ171 

sheep (n = 23). 

 

3.3 Sheep of the ARR/ARR genotype typically have undetectable levels of C2 fragment.  

In parallel to the C1 fragment, we measured the steady state levels of the C2 fragment also by 

immunoblotting with antibody BC6. Across sheep of all genotypes, the mean C2 level (for 

C2 ≠ 0) was 7.8 % (SD ± 4.8) of total PrP
C
, but only 11 out of 28 samples had detectable C2 

(defined here as ≥ 1% of total PrP
C
). A single RR171 sample out of 11 showed detectable C2, 

whereas in QQ171 samples the frequency was 10 out of 18. The RR171 samples were five 

times less likely to show C2 fragment than QQ171 genotypes (p ≤ 0.01), but no correlation 

was observed between relative levels of C1 and C2 (for C2 ≠ 0).  

 

3.4 Recombinant C1 can form amyloid fibrils in-vitro.  

Our data here show that all genotypes studied express some level of C1. To further 

investigate genotype specific effects associated with the folding pathways of the C1 

fragment, we explored in-vitro fibrillisation assays with recombinant proteins. Five proteins 
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were expressed, two represent full-length ovine PrP25-233 of sequence variants ARR and VRQ 

(designated rPrP
ARR

 and rPrP
VRQ

), expressed in pTrcHis B/Rosseta bacterial system. The 

three others represent truncated ovine PrP115-235 of sequence variants ARR, VRQ and ARQ, 

expressed in a PET-19b/BL21 (DE3) bacterial system, which are the equivalent of the C1 

fragments but which incorporate an N-terminal histidine tag to aid purification (designated 

rC1
ARR

, rC1
VRQ

, rC1
ARQ

). The regions of the protein expressed are shown schematically in 

Figure 3A.  

As expected, the recombinant C1 proteins were detected by immune-blotting with the C-

terminal antibody, BC6, but no reactivity was observed towards the N-terminal antibody P4 

(Figure 3B).The purity of protein was confirmed both by SDS-PAGE stained with Instant 

Blue (Figure 3C) and by mass spectrometry. Mass spectrometry revealed that the rC1 proteins 

had been correctly expressed, but also indicated small amounts of the protein that had been 

modified causing mass shifts of +178Da and +258Da (see supplementary Figure S1). Such 

modifications have been previously documented and are attributed to spontaneous alpha-N-6-

phospho-gluconoylation of the His Tag [38]. These modifications were slightly more 

abundant in the rC1
ARR 

variant, but since the levels of these modifications are already low 

and the modifications are within the octa-histidine tag, they are unlikely to impact on protein 

misfolding or stability. To check this we measured circular dichroism spectra (CD) for the 

three rC1 protein variants, which verified that all exhibited a primarily alpha-helical structure, 

characterized by spectra showing two minima at 222 nm and 208 nm, as shown in Figure 3D. 

Using CD analysis programs SELCON3 (CONTINLL) [39, 40] it was estimated that our rC1 

peptides consisted of secondary structures in the following proportions: rC1
ARR

 was 28% 

(28%) α-helix, 21% (22%) β-sheet and 51% (51%) random coil; rC1
VRQ 

was 42% (38%) α-

helix, 13% (18%) β-sheet and 46% (44%) random coil; rC1
ARQ

 was 28% (34%)  α-helix, 16% 

(17%) β-sheet and 58% (49%) random coil.  

Using the five different PrP-derived recombinant proteins, fibrillisation assays were set up in 

the presence of thioflavin T (ThT). Fibril formation kinetics were measured over a 24-hour 

period and lag times were calculated as described in Graham et al. [37]. Fibrillisation 

experiments were repeated multiple times and typical fibrillisation curves for C1 fragments 

are shown in Figure 4, whilst typical curves for the full length proteins rPrP
VRQ

 and rPrP
ARR

 

are shown in Figure 7. Fibrillisation of rPrP
ARR 

and rPrP
VRQ 

showed an initial lag phase 

(nucleation) followed by a rapid increase in fluorescence on fibril growth (elongation) as 

reported previously for murine full length PrP [41, 42] and human full length PrP [43]. 
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rPrP
VRQ 

had an average lag time of 5.57 hours (SEM +/- 0.40, n =16) while with rPrP
ARR 

the 

lag time was longer (p  0.002), averaging 8.32 hours (SEM +/- 0.69, n =16).  

Fibrillisation of rC1
VRQ 

(n=24) and rC1
ARQ 

(n=14) produced curves that were qualitatively 

similar to those of the full-length variants, with average lag times of 3.98 (SEM+/- 0.34) and 

3.96 (SEM +/- 0.22) hours respectively (Figure 4). Once maximum fluorescence was 

reached, ThT fluorescence curves tended to fall to around 50 % of the maximum. This 

phenomenon of reducing fluorescence signal following fibril formation has previously been 

reported during the fibrillisation of human rPrP
90-231

. The reasons for it are yet to be fully 

explained, but Almstedt et al. suggested that aggregation of fibrils was the most likely cause, 

thereby reducing the outward facing regions available for ThT binding [43]. 

Compared to other rC1 proteins, rC1
ARR 

(n=24) showed a modified fibrillisation profile 

comprising a significantly longer lag time (p ≤ 2.5 x 10
-6

), on average 11.0 hours (SEM +/- 

1.0) (Figure 4) and a reduced elongation rate after nucleation. Indeed, complete fibrillisation 

often did not occur within the 24-hour time frame of the experiment; in these cases the lag 

times could not be calculated, since this calculation depends on maximal levels of ThT 

fluorescence being achieved. Figure 4 shows an example of two rC1
ARR 

reactions, one 

positive and one negative for complete fibrillisation. These results indicate that rC1
ARR 

has a 

decreased ability to form amyloid fibrils when compared to other two rC1 variants. 

To confirm that C1 proteins were producing fibrils rather than non-fibrillar, ThT-binding 

aggregates, we applied a fibril maturation assay originally described by Bocharova et al [44]. 

Fibrils composed of rPrP have a PK resistant core of10-12 kDa, but by heating PrP amyloid 

fibrils to 80 ˚C a structural change is initiated such that the PK-resistant core is extended to 

16 kDa. Protease-resistant PrP can be detected SDS-PAGE and silver staining and typical 

results are shown in Figure 5. For the full length rPrP samples, a well-defined 16 kDa band is 

evident after maturation along with the characteristic 12 and 10 kDa fragments, consistent 

with previously reported results [36, 44] and confirming the presence of fibrils. In rC1 

fibrillisation reactions along with the three bands described above, two additional PK-

resistant fragments appeared after maturation, one of the similar size to the intact rC1 protein 

(~16.6 kDa) and one of ~13 kDa. The presence of a 13 kDa band was also evident in 

maturation assays of human PrP90-231 [45] and may indicate formation of disordered 

aggregates with increased PK resistance. The 16.6 kDa band could represent an increase in 

core expansion or a structural change which alters available PK digestion sites. The 16 kDa 
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band was less intense in rC1 fibril preparations compared to rPrP preparations, suggesting 

that a reduced amount of fibrils may be produced in rC1 fibrillisation reactions.  

To further characterise rC1 amyloid fibrils, we analysed preparations by electron microscopy, 

as shown in Figure 6. Fibrils were observed in all preparations and there were no clear 

morphological differences between fibrils from different samples, although using this 

technique it was not possible to quantify the number of fibrils. Nevertheless, it is clear that 

rC1 proteins all form fibrils in a similar manner to rPrP, but that fibrillisation of the rC1
ARR

 

protein proceeds with an extended lag time and reduced growth rate compared to rC1
VRQ

 and 

rC1
ARQ

. 

3.5 rC1
ARR 

but not rC1
VRQ

 or rC1
ARQ

 inhibits fibrillisation of other PrP variants.  

In vivo, it is possible that the C1 fragment may interfere with misfolding of full length PrP
C
. 

Depending on their PRNP genotype, ovine cells will contain a mixture of full-length PrP
C
 

molecules and C1 fragments with identical or different protein sequences at ratios that vary 

from 4:1 to 1:1. To partially mimic this in vivo scenario, we performed mixed fibrillisation 

assays with both truncated and full length recombinant proteins at different ratios. 

Fibrillisation reactions were repeated multiple times and typical results for selected reaction 

mixtures are show in Figure 7. rPrP
VRQ

 was mixed at a 1:1 ratio with rC1
ARR

 (n=10), rC1
ARQ 

(n = 6) or rC1
VRQ 

(n = 10) and the lag time of fibrillisation was measured. There was no 

significant change in lag time with addition of rC1
ARQ

 (data not shown) or rC1
VRQ

 compared 

to rPrP
VRQ 

alone. However, rC1
ARR

 addition significantly increased the lag time of 

fibrillisation of rPrP
VRQ

 from 5.57 hours (SEM  ± 0.40) to 10.6 hours (SEM  ± 1.12) (p  = 5.2 

x 10
-5

). As observed with fibrillisation of rC1
ARR

, approximately 75% of the mixed assays 

containing rC1
ARR

 did not result in full fibrillisation within the time frame of the experiment 

and therefore lag times could not be calculated in these cases. When full fibrillisation was 

achieved, it was evident that the elongation phase of fibrillisation of rPrP
VRQ

 was extended 

and closely resembled those observed with rC1
ARR 

alone, with a slow ThT increase after 

nucleation and low maximum fluorescence.  

The presence of fibrils in these mixed assays was confirmed using the maturation assay, as 

shown in Figure 5, which showed 10 and 12 kDa bands as described for both rPrP species 

along with a prominent 16.6 kDa band associated with C1 fibrils alone after maturation. The 

16 kDa band which would confirm the presence of full length PrP fibrils is very faint when 

compared to maturation and PK digestion of full length rPrP alone, indicating that full length 

PrP has not formed amyloid fibrils but this mixed reaction favours the production of C1 

fibrils.  
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Reactions at a 4:1 rPrP
VRQ

: rC1
ARR

 ratio were also performed (n = 7), in which average lag 

time for fibrillisation of rPrP
VRQ

 was increased to 6.6 hours (SEM ± 1.36). In these reactions, 

fibrillisation of rPrP
VRQ

 was inhibited to less of an extent compared to the 1:1 reactions. The 

rate of elongation and maximum fluorescence were lower than seen with full length protein 

alone, with 3 out of 7 repeats failing to fibrillise fully within the time frame of the experiment 

(Figure 7). 

We then mixed rPrP
ARR

 with all three variants of C1 at a 1:1 ratio. Addition of rC1
ARR 

to 

rPrP
ARR 

(n=10) increased the average lag time only marginally from 8.3 (SEM ± 0.69) to 9.0 

(SEM ± 0.41), but reduced the rate of fibril elongation dramatically, as illustrated in Figure 7. 

In contrast, addition of rC1
VRQ 

or rC1
ARQ

 (data not shown) to rPrP
ARR 

shortened the lag time 

of fibrillisation. The early ThT fluorescence increase may represent C1 fibrillisation and 

mask the slightly later fibrillisation of rPrP
ARR

 or the addition of these C1 variants may 

increase the rate of nucleation and elongation of rPrP
ARR

. Further evidence to support the 

second of these hypotheses is the observation, in some mixed reactions, of two peaks of 

fluorescence, illustrated in the rPrP
VRQ 

+ rC1
VRQ 

fibrillisation curve in Figure 7. In these 

cases, curves of best fit could not be produced and lag times were not calculated.  

We propose that the two fluorescence maxima may represent separate fibrillisation 

mechanisms of the two protein variants, however, at this point we have no direct evidence of 

this. Across all our fibrillisation reactions, we calculated lag times, for those reactions that 

produced a maximum of ThT fluorescence, and averaged these. The results are shown 

graphically in Figure 8, from which it is clear that the rC1
ARR 

inhibits fibrillisation of both 

full length rPrP
ARR 

and rPrP
VRQ

 whilst rC1
VRQ

 and rC1
ARQ

 do not inhibit fibrillisation. 

 

4. Discussion 

The susceptibility of sheep to various natural prion diseases provides a valuable genetic 

model of disease resistance in which mechanisms of protein misfolding and 

neurodegeneration can be studied [16, 33, 46]. PRNP genetics are exploited worldwide in 

breeding programmes to manage the risk of scrapie outbreaks, despite a critical lack of 

understanding the underlying mechanisms that link PrP
C
 variants to disease resistance. By 

revealing a molecular basis of resistance, more effective measures could be put in place both 

to restrict new prion strains from adapting to low risk PRNP genotypes and to maintain PrP
C 

variants with protective potential.  

A number of in vitro studies into the molecular aspects of resistance of specific sheep 

genotypes to scrapie have probed the initial binding of cellular to disease-associated prion 
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protein prior to conversion [47, 48] or on the relative convertibility of prion protein variants
 

[15, 34]. Others have tried to explain disease resistance by allele-specific expression profiles 

[47, 48], different protein conformations or different characteristics of fibrillisation and 

thermal stability [14]. Our results demonstrate that there are higher levels of PrP
C
 α-cleavage 

fragments in sheep of the scrapie-resistant genotype ARR/ARR relative to sheep of more 

susceptible genotypes. The C1 fragment is produced by the action of an unknown ‘α-

secretase’ and high C1 levels in ARR/ARR sheep may result from an increased proteolytic 

processing of PrP
ARR 

compared to PrP
ARQ 

or PrP
VRQ

 or due to differences in the half-lives of 

the allotypic C1 fragments. The former may be explained by conformational differences 

leading to increased presentation of the cleavage site for the α-secretase or by the extended 

presence of PrP
ARR

 within the Golgi apparatus increasing the chance of interacting with the 

α-secretase [49].  

Setting the reason for the differences aside, the correlation between a high C1 level and 

scrapie resistance is supported by similar evidence from cell culture assays and transgenic 

mouse models. Lewis et al [32] showed that neuronal and non-neuronal cell lines with higher 

levels of α-cleavage show more resistance to prion infection and concluded that this cleavage 

is the most important factor in the selective vulnerability to prions [32]. Scrapie challenges in 

transgenic mice expressing only C1 protein [31] showed  that C1 alone does not act as a 

substrate for conversion to PrP
Sc

. Over-expression of C1 in the presence of full length PrP
C 

slowed accumulation of PrP
Sc

 and extended the incubation period of disease in these 

transgenic mice, supporting the view that C1 may inhibit some unknown pathway in the 

conversion of PrP
C
 to PrP

Sc
. 

 

Along with the possible effects of C1, the corresponding product of α-cleavage, N1 has been 

shown to possess neuroprotective functions. For example, N1 can inhibit staurosporine 

induced caspase-3 activation through the p53 pathway [50] and addition of a recombinant N1 

isoform in cultured cells also shows dose dependent neuroprotective effects [51]. Although 

we have not measured levels of N1 in our sheep brain samples, we can infer its presence from 

the levels of the corresponding C1 fragment and it is likely, therefore, that the increased 

levels of this fragment in disease-resistant animals will represent an additional benefit in 

protection against the neurodegeneration associated with prion disease.  

Our observation that relative C2 levels in ARR/ARR sheep were significantly reduced when 

compared to the other genotypes is surprising, since there is little supporting evidence of an 

inverse correlation between α – and β–cleavage in healthy individuals. The small C2 

percentage in sheep with QQ171 genotypes may represent an additional susceptibility-
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enhancing factor which remains to be investigated in more detail. Truncated recombinant PrP 

(90-231), representing the C2 isoform, has a similar ability to aggregate and fibrillise as full 

length recombinant PrP [52]. 

Since PrP
ARR

 associated with prion resistance produces increased C1 levels in vivo and the 

presence of C1 protein reduces PrP conversion levels in cell culture [32] and transgenic mice 

[31] we investigated whether the C1 fragment could interfere with misfolding of PrP . We 

produced various allotypes of recombinant C1 and full length PrP and assessed their ability to 

form amyloid fibrils in vitro. All variants had the ability to form amyloid fibrils as confirmed 

by increases in ThT fluorescence during fibrillisation, the presence of a 16 kDa protease-

resistant core after maturation [44] and the presence of fibrillar aggregates visualised by 

electron microscopy.  

rC1
ARR 

had a significantly longer lag time of fibrillisation and an altered fibril growth phase 

when compared to both other allotypic forms of rC1 and rPrP
C
. Often reactions with rC1

ARR 

would fail to fibrillise fully within the time frame of the experiment indicating that this 

protein has a reduced potential to form fibrils. Similar polymorphism dependent differences 

have been reported with in vitro conversion of human rPrP
90-231

 [53-55]. 

When mixed with other protein variants at a ratio of 1:1, to represent a situation similar to 

heterozygous brain tissue, rC1
ARR

 inhibited fibril formation whilst rC1
ARQ

 and rC1
VRQ

 did 

not. In fibrillisation reactions with a rPrP
C
: rC1 ratio of 4:1, inhibition was observed but the 

increase in lag time was less dramatic suggesting that the rPrP: rC1 ratio could be an 

important factor if similar inhibitory mechanisms apply in vivo.  

Our findings show that rC1
ARR

 can inhibit the initial nucleation of amyloid fibrils and slow 

the elongation phase of fibrillisation, but it is unclear if C1 also prevents conversion of PrP
C 

to PrP
Sc

. Westergard et al hypothesised that C1 acts as competitor for the binding of PrP
C 

to 

PrP
Sc

, thereby delaying the onset of disease [31]. We expand on these results by showing that 

rC1 can directly inhibit the formation of rPrP amyloid fibrils in the absence of PrP
Sc

 and we 

believe that there may be two mechanisms explaining this inhibition. The rC1 protein may 

bind to rPrP
 
and prevent further interaction with other rPrP

 
proteins thereby inhibiting the 

formation of an initiating nucleus. Alternatively, the rC1 protein may become incorporated 

into amyloid fibrils of rPrP, which would interfere with subsequent elongation of the fibrils, 

perhaps by inducing the formation of disordered aggregates. Since the addition of rC1
ARR 

both increases the lag time and alters the elongation phase, both putative mechanisms may 

occur simultaneously.  

In contrast to the findings by Westergard et al in our in vitro assays only one out of three 
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ovine C1 sequences had an inhibiting effect on fibril formation, indicating it is the arginine at 

position 171 specifically which is responsible for the effects seen. Wild type, ovine C1
ARQ 

appeared not to affect fibril formation in vitro, whereas mouse wild type C1, which is 

different from sheep C1
ARQ

 by only nine amino acid changes - has a delaying effect on 

development of TSE disease in vivo [31]. It remains to be established whether this indicates 

that the inhibition mechanism for the seeded and un-seeded nucleation or elongation is 

different or that the effects of C1 on prion replication are amplified in an in-vivo situation. 

The dominant negative inhibitory effect of C1 may be a crucial component in defining 

susceptibility and incubation periods in sheep of heterozygous PRNP genotypes. 

Experimental scrapie in VRQ/ARR sheep can lead to incubation periods twice as long as for 

VRQ/VRQ sheep and longer than VRQ/ARQ [9, 56, 57]. Furthermore, in experimental BSE, 

incubation periods in sheep of the ARQ/ARR genotype can be four times as long as for 

ARQ/ARQ sheep [58] (Goldman et al unpublished). Our data indicate that the ratio of full-

length rPrP
C
 and rC1 fragment influences the strength of inhibition. Based on our results the 

ratio between rC1
ARR

 and rPrP
VRQ

 should be close to equal in VRQ/ARR sheep, whilst in 

ARQ/ARR sheep there should be approximately twice as much rC1
ARR

 than rPrP
ARQ

, 

supporting the idea that C1 fragments indeed play a part in scrapie pathogenesis. 

The ability of rC1
ARR

 to inhibit conversion of rPrP makes it a possible therapeutic target in 

the treatment of prion disease. The possible effects of C1 protein if applied exogenously or 

increasing the levels of α-cleavage through manipulation of α-secretase in the in the early 

stages of TSE infection may slow disease progression, and warrants further investigation.  
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Figure 1 – Measurement of C1 fragment in different brain areas of the same animal by 

western blot.  

A: Representative Western blot of seven brain areas from an ARQ/ARQ sheep. 10% brain 

homogenate was treated with PNGase F and the membrane was probed with BC6 antibody. * 

Full length PrP
C
, **C2, ***C1.  These bands were measured by densitometry and C1 levels 

were calculated as a percentage of total PrP
C
 for each brain area. B: Graph comparing 

average levels of C1 in the cortex with six brain areas. C1 data from the six other brain areas 

was normalized against cortex (cortex = 1) for each animal.  

 

Figure 2 – Comparison of relative C1 levels in the ovine cortex of sheep with varied 

susceptibility to scrapie.  

A: Representative Western blots from each genotype tested (ARR/ARR, ARQ/ARQ and 

VRQ/VRQ). 10% brain homogenate was treated with PNGase F and the membrane was 

probed with BC6 antibody. * Full length PrP
C
, **C2, ***C1. B: Graph showing the average 

C1 values as a percentage of total PrP as measured by densitometry.  Each sample was blotted 

and measured a minimum of twice and the average for each animal was plotted, ARR/ARR 

(n= 11), ARQ/ARQ (n=13), VRQ/VRQ (n=5). An overall average for each genotype was 

calculated and compared statistically using the Mann-Whitney U test. 

Figure 3 – Characterisation of rC1 proteins.  

A: Diagrammatic representation of recombinant full length and truncated C1 protein. C1 was 

expressed with His-Tag to aid purification in the absence of the N-terminal region. B: 

Western blots of rC1 proteins, probed with monoclonal antibodies P4 (epitope 89-104) and 

BC6 (epitope 146-154). Lane 1: rC1
ARR

; Lane 2: rC1
ARQ

, Lane 3: rC1
VRQ

. rC1 was not 

recognized by P4 but showed binding to BC6. C: All variants of recombinant protein 

expressed were separated by SDS-page and stained with Instant Blue to confirm purity. Lane 

1: rPrP
ARR

, Lane 2: rPrP
VRQ 

, Lane 3: rC1
ARR

, Lane 4: rC1
ARQ

, Lane 5: rC1
VRQ 

.  D: Circular 

Dichroism analysis of three C1 variants to assess secondary structure. 

 

Figure 4 –Kinetics of rC1 fibrilisation measured by ThT fluorescence.  
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Typical fibrillisation curves for each rC1 variant. rC1
ARQ 

and rC1
VRQ

 have short lag times 

followed by a rapid elongation phase. rC1
ARR

 often did not reach fibrillisation within the time 

frame of the experiment, described as negative for fibrillisation ( rC1
ARR

-ve).  

Figure 5 – Maturation and PK digestion of PrP and C1 fibrils.  

0.5 µg of recombinant protein was untreated (Lane 1), PK treated at a ratio of PrP:PK (Lane 

2), or matured by heating to 80°C followed by PK treatment (Lane 3). Matured fibrils (Lane 

3) show increased PK resistance relative to non-matured fibrils. rPrP reactions show a 16 kDa 

band after maturation which confirms the presence of fibrils, highlighted by the black box. In 

rC1 preparations, bands with increased PK resistance of 16.6 kDa, 16 kDa and 13 kDa are 

present, highlighted by the dotted box. Mixed reactions of rPrP
VRQ 

and rC1 have a prominent 

band of 16.6 kDa with a faint 16kDa band, highlighted by the dashed box. 

Figure 6 – Electron Microscopy of rC1 and rPrP fibrils.  

Fibrils were produced in the absence of ThT and dialysed into sodium acetate. Fibrils were 

viewed on a transmission electron microscope. Images were taken at x 5000 and x 20000. A: 

rC1
ARR

, B: rC1
ARQ

, C: rC1
VRQ

, D: rPrP
ARR

, E: rPrP
VRQ

. 

Figure 7 – Fibrillisation of rPrP in the presence of rC1.  

Typical fibrillisation curves for mixed reactions. Addition of C1
ARR 

to full length PrP
ARR 

and 

PrP
VRQ 

at both a 1:1 and a 4:1 ratio extends the lag time of fibrillisation, slows the rate of ThT 

fluorescence increase and lowers maximum fluorescence. These effects are reduced in 

experiments at 4: 1 ratio. During mixed reactions, two peaks of fluorescence were evident in 

some wells, illustrated in rPrP
VRQ

 + rC1
VRQ

 1:1. 

 

Figure 8 – Addition of rC1
ARR

 increases lag time of fibrillisation of other rPrP variants.  

A) Graph showing average lag time for rPrP
VRQ

 : rC1
ARR

, rC1
ARQ

, rC1
VRQ

 mixed fibrillisation 

reactions along with the frequency of reactions failing to fibrillise within the 24 hour time 

frame of the experiment, calculated as a percentage of total reactions. B) As described for 

graph A) for rPrP
ARR

 : rC1
ARR

, rC1
ARQ

, rC1
VRQ

 mixed fibrillisation reactions. 

 

Supplementary Figure S1    Mass spectrum of rC1
ARR

 and rC1
VRQ

  

 



 
 

23 
 

Figure 1 

 

  



 
 

24 
 

Figure 2 

 

  



 
 

25 
 

Figure 3 

 

 

  



 
 

26 
 

Figure 4 

 

 

Figure 5 

 

 

 

  



 
 

27 
 

Figure 6 

 

  



 
 

28 
 

Figure 7 

 



 
 

29 
 

  



 
 

30 
 

Figure 8 

 

  



 
 

31 
 

Supplementary Figure S1 

(A) Mass spectrum and (inset) deconvoluted mass spectrum of the expressed rC1
ARR

 

fragment.  

The spectrum consists of a single major charge envelope, labelled with ‘A’ along with the 

charge state of each of the species (20+, 19+ etc) and the mass/charge ratio at which each 

peak occurs. Deconvolution of the spectrum shows the presence of a single major species 

(labelled Mr(A) 16505.9) which represents the unmodified protein. The measured 

molecular weight of the unmodified protein (16505.9 Da) is in excellent agreement with 

the theoretical molecular weight calculated from the sequence of 16506.1 Da. A second 

species (labelled Mr(B) 16764.1) occurs at a molecular weight of 258 Da higher than the 

unmodified protein whilst a third (labelled Mr (C) 16684.7) is 178 Da higher in mass than 

the unmodified protein. These species are consistent with previously reported 

modifications within the His Tag region of the protein, specifically attributed to 

spontaneous alpha-N-6-phospho-gluconoylation.  
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(A) Mass spectrum and (inset) deconvoluted mass spectrum of the expressed rC1
VRQ

 

fragment.  

The spectrum consists of a single major charge envelope, labelled with ‘A’ along with the 

charge state of each of the species (20+, 19+ etc) and the mass/charge ratio at which each 

peak occurs. Deconvolution of the spectrum shows the presence of a single major species 

(labelled Mr(A) 16505.9) which represents the unmodified protein. The measured molecular 

weight of the unmodified protein (16505.9 Da) is in excellent agreement with the theoretical 

molecular weight calculated from the sequence of 16506.1 Da. A second species (labelled 

Mr(B) 16763.5) occurs at a molecular weight of 258 Da higher than the unmodified protein 

whilst a third (labelled Mr (E) 16684.1) is 178 Da higher in mass than the unmodified 

protein. These species are consistent with previously reported modifications within the His 

Tag region of the protein, specifically attributed to spontaneous alpha-N-6-phospho-

gluconoylation. The levels of modifications are lower for the VRQ variant than for the ARR 

variant, but in both cases appear to be present in less than 15% of the protein. 

 

 

 

 

826.3 
20+ (A) 

869.7 
19+ (A) 

918.0 
18+ (A) 

971.9 
17+ (A) 

1032.6 
16+ (A) 

1101.4 
15+ (A) 

1180.1 
14+ (A) 

0 

1 

2 

3 

7 x10 
Intens. 

600 800 1000 1200 1400 1600 1800 m/z 

16505.9 
Mr (A) 

16547.0 
Mr (D) 

16684.1 
Mr (E) 

16763.5 
Mr (B) 

0.0 

0.5 

1.0 

1.5 

8 x10 
Intens. 

16400 16500 16600 16700 16800 m/z 


