3,880 research outputs found

    SOPHIE velocimetry of Kepler transit candidates. V. The three hot Jupiters KOI-135b, KOI-204b and KOI-203b (alias Kepler-17b)

    Full text link
    We report the discovery of two new transiting hot Jupiters, KOI-135b and KOI-204b, that were previously identified as planetary candidates by Borucki et al. 2011, and, independently of the Kepler team, confirm the planetary nature of Kepler-17b, recently announced by Desert et al. 2011. Radial-velocity measurements, taken with the SOPHIE spectrograph at the OHP, and Kepler photometry (Q1 and Q2 data) were used to derive the orbital, stellar and planetary parameters. KOI-135b and KOI-204b orbit their parent stars in 3.02 and 3.25 days, respectively. They have approximately the same radius, Rp=1.20+/-0.06 R_jup and 1.24+/-0.07 R_jup, but different masses Mp=3.23+/-0.19 M_jup and 1.02+/-0.07 M_jup. As a consequence, their bulk densities differ by a factor of four, rho_p=2.33+/-0.36 g.cm^-3 (KOI-135b) and 0.65+/-0.12 g.cm-3 (KOI-204b). Our SOPHIE spectra of Kepler-17b, used both to measure the radial-velocity variations and determine the atmospheric parameters of the host star, allow us to refine the characterisation of the planetary system. In particular we found the radial-velocity semi-amplitude and the stellar mass to be respectively slightly smaller and larger than Desert et al. These two quantities, however, compensate and lead to a planetary mass fully consistent with Desert et al.: our analysis gives Mp=2.47+/-0.10 M_jup and Rp=1.33+/-0.04 R_jup. We found evidence for a younger age of this planetary system, t<1.8 Gyr, which is supported by both evolutionary tracks and gyrochronology. Finally, we confirm the detection of the optical secondary eclipse and found also the brightness phase variation with the Q1 and Q2 Kepler data. The latter indicates a low redistribution of stellar heat to the night side (<16% at 1-sigma), if the optical planetary occultation comes entirely from thermal flux. The geometric albedo is A_g<0.12 (1-sigma).Comment: submitted to Astronomy and Astrophysic

    Search for heavy neutrinos mixing with tau neutrinos

    Get PDF
    We report on a search for heavy neutrinos (\nus) produced in the decay D_s\to \tau \nus at the SPS proton target followed by the decay \nudecay in the NOMAD detector. Both decays are expected to occur if \nus is a component of Μτ\nu_{\tau}.\ From the analysis of the data collected during the 1996-1998 runs with 4.1×10194.1\times10^{19} protons on target, a single candidate event consistent with background expectations was found. This allows to derive an upper limit on the mixing strength between the heavy neutrino and the tau neutrino in the \nus mass range from 10 to 190 MeV\rm MeV. Windows between the SN1987a and Big Bang Nucleosynthesis lower limits and our result are still open for future experimental searches. The results obtained are used to constrain an interpretation of the time anomaly observed in the KARMEN1 detector.\Comment: 20 pages, 7 figures, a few comments adde

    Optimizing exoplanet transit searches around low-mass stars with inclination constraints

    Full text link
    Aims. We investigate a method to increase the efficiency of a targeted exoplanet search with the transit technique by preselecting a subset of candidates from large catalogs of stars. Assuming spin-orbit alignment, this can be done by considering stars that have higher probability to be oriented nearly equator-on (inclination close to 90^{\circ}). Methods. We use activity-rotation velocity relations for low-mass stars with a convective envelope to study the dependence of the position in the activity-vsini diagram on the stellar axis inclination. We compose a catalog of G-, K-, M-type main sequence simulated stars using isochrones, an isotropic inclination distribution and empirical relations to obtain their rotation periods and activity indexes. Then the activity - vsini diagram is filled and statistics are applied to trace the areas containing the higher ratio of stars with inclinations above 80^{\circ}. A similar statistics is applied to stars from real catalogs with log(R'HK) and vsini data to find their probability of being equator-on. Results. We present the method used to generate the simulated star catalog and the subsequent statistics to find the highly inclined stars from real catalogs using the activity - vsini diagram. Several catalogs from the literature are analysed and a subsample of stars with the highest probability of being equator-on is presented. Conclusions. Assuming spin-orbit alignment, the efficiency of an exoplanet transit search in the resulting subsample of probably highly inclined stars is estimated to be two to three times higher than with a global search with no preselection.Comment: Accepted by A&A, 10 pages, 4 figure

    Temporal evolution and correlations of optical activity indicators measured in Sun-as-a-star observations

    Get PDF
    A.C.C. acknowledges support from the Science and Technology Facilities Council (STFC) consolidated grant number ST/R000824/1.Context. Understanding stellar activity in solar-type stars is crucial for the physics of stellar atmospheres as well as for ongoing exoplanet programmes. Aims. We aim to test how well we understand stellar activity using our own star, the Sun, as a test case. Methods. We performed a detailed study of the main optical activity indicators (Ca II H & K, Balmer lines, Na I D1 D2, and He I D3) measured for the Sun using the data provided by the HARPS-N solar-telescope feed at the Telescopio Nazionale Galileo. We made use of periodogram analyses to study solar rotation, and we used the pool variance technique to study the temporal evolution of active regions. The correlations between the different activity indicators as well as the correlations between activity indexes and the derived parameters from the cross-correlation technique are analysed. We also study the temporal evolution of these correlations and their possible relationship with indicators of inhomogeneities in the solar photosphere like sunspot number or radio flux values. Results. The value of the solar rotation period is found in all the activity indicators, with the only exception being HÎŽ. The derived values vary from 26.29 days (HÎł line) to 31.23 days (He I). From an analysis of sliding periodograms we find that in most of the activity indicators the spectral power is split into several “bands” of periods around 26 and 30 days. They might be explained by the migration of active regions between the equator and a latitude of ∌30°, spot evolution, or a combination of both effects. A typical lifetime of active regions of approximately ten rotation periods is inferred from the pooled variance diagrams, which is in agreement with previous works. We find that Hα, HÎČ, HÎł, HÏ”, and He I show a significant correlation with the S index. Significant correlations between the contrast, bisector span, and the heliocentric radial velocity with the activity indexes are also found. We show that the full width at half maximum, the bisector, and the disc-integrated magnetic field correlate with the radial velocity variations. The correlation of the S index and Hα changes with time, increasing with larger sun spot numbers and solar irradiance. A similar tendency with the S index and radial velocity correlation is also present in the data. Conclusions. Our results are consistent with a scenario in which higher activity favours the correlation between the S index and the Hα activity indicators and between the S index and radial velocity variations.PostprintPeer reviewe

    First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data

    Get PDF
    Spinning neutron stars asymmetric with respect to their rotation axis are potential sources of continuous gravitational waves for ground-based interferometric detectors. In the case of known pulsars a fully coherent search, based on matched filtering, which uses the position and rotational parameters obtained from electromagnetic observations, can be carried out. Matched filtering maximizes the signalto- noise (SNR) ratio, but a large sensitivity loss is expected in case of even a very small mismatch between the assumed and the true signal parameters. For this reason, narrow-band analysis methods have been developed, allowing a fully coherent search for gravitational waves from known pulsars over a fraction of a hertz and several spin-down values. In this paper we describe a narrow-band search of 11 pulsars using data from Advanced LIGO’s first observing run. Although we have found several initial outliers, further studies show no significant evidence for the presence of a gravitational wave signal. Finally, we have placed upper limits on the signal strain amplitude lower than the spin-down limit for 5 of the 11 targets over the bands searched; in the case of J1813-1749 the spin-down limit has been beaten for the first time. For an additional 3 targets, the median upper limit across the search bands is below the spin-down limit. This is the most sensitive narrow-band search for continuous gravitational waves carried out so far

    Hunt for new phenomena using large jet multiplicities and missing transverse momentum with ATLAS in 4.7 fb−1 of s√=7TeV proton-proton collisions

    Get PDF
    Results are presented of a search for new particles decaying to large numbers of jets in association with missing transverse momentum, using 4.7 fb−1 of pp collision data at s√=7TeV collected by the ATLAS experiment at the Large Hadron Collider in 2011. The event selection requires missing transverse momentum, no isolated electrons or muons, and from ≄6 to ≄9 jets. No evidence is found for physics beyond the Standard Model. The results are interpreted in the context of a MSUGRA/CMSSM supersymmetric model, where, for large universal scalar mass m 0, gluino masses smaller than 840 GeV are excluded at the 95% confidence level, extending previously published limits. Within a simplified model containing only a gluino octet and a neutralino, gluino masses smaller than 870 GeV are similarly excluded for neutralino masses below 100 GeV

    Measurement of the cross-section and charge asymmetry of WW bosons produced in proton-proton collisions at s=8\sqrt{s}=8 TeV with the ATLAS detector

    Get PDF
    This paper presents measurements of the W+→Ό+ÎœW^+ \rightarrow \mu^+\nu and W−→Ό−ΜW^- \rightarrow \mu^-\nu cross-sections and the associated charge asymmetry as a function of the absolute pseudorapidity of the decay muon. The data were collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with the ATLAS experiment at the LHC and correspond to a total integrated luminosity of 20.2~\mbox{fb^{-1}}. The precision of the cross-section measurements varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the 1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured with an uncertainty between 0.002 and 0.003. The results are compared with predictions based on next-to-next-to-leading-order calculations with various parton distribution functions and have the sensitivity to discriminate between them.Comment: 38 pages in total, author list starting page 22, 5 figures, 4 tables, submitted to EPJC. All figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-13

    Measurement of the production of a W boson in association with a charm quark in pp collisions at √s = 7 TeV with the ATLAS detector

    Get PDF
    The production of a W boson in association with a single charm quark is studied using 4.6 fb−1 of pp collision data at s√ = 7 TeV collected with the ATLAS detector at the Large Hadron Collider. In events in which a W boson decays to an electron or muon, the charm quark is tagged either by its semileptonic decay to a muon or by the presence of a charmed meson. The integrated and differential cross sections as a function of the pseudorapidity of the lepton from the W-boson decay are measured. Results are compared to the predictions of next-to-leading-order QCD calculations obtained from various parton distribution function parameterisations. The ratio of the strange-to-down sea-quark distributions is determined to be 0.96+0.26−0.30 at Q 2 = 1.9 GeV2, which supports the hypothesis of an SU(3)-symmetric composition of the light-quark sea. Additionally, the cross-section ratio σ(W + +cÂŻÂŻ)/σ(W − + c) is compared to the predictions obtained using parton distribution function parameterisations with different assumptions about the s−sÂŻÂŻÂŻ quark asymmetry

    Measurement of χ c1 and χ c2 production with s√ = 7 TeV pp collisions at ATLAS

    Get PDF
    The prompt and non-prompt production cross-sections for the χ c1 and χ c2 charmonium states are measured in pp collisions at s√ = 7 TeV with the ATLAS detector at the LHC using 4.5 fb−1 of integrated luminosity. The χ c states are reconstructed through the radiative decay χ c → J/ÏˆÎł (with J/ψ → ÎŒ + ÎŒ −) where photons are reconstructed from Îł → e + e − conversions. The production rate of the χ c2 state relative to the χ c1 state is measured for prompt and non-prompt χ c as a function of J/ψ transverse momentum. The prompt χ c cross-sections are combined with existing measurements of prompt J/ψ production to derive the fraction of prompt J/ψ produced in feed-down from χ c decays. The fractions of χ c1 and χ c2 produced in b-hadron decays are also measured

    Measurements of Higgs boson production and couplings in diboson final states with the ATLAS detector at the LHC

    Get PDF
    Measurements are presented of production properties and couplings of the recently discovered Higgs boson using the decays into boson pairs, H →γ Îł, H → Z Z∗ →4l and H →W W∗ →lÎœlÎœ. The results are based on the complete pp collision data sample recorded by the ATLAS experiment at the CERN Large Hadron Collider at centre-of-mass energies of √s = 7 TeV and √s = 8 TeV, corresponding to an integrated luminosity of about 25 fb−1. Evidence for Higgs boson production through vector-boson fusion is reported. Results of combined ïŹts probing Higgs boson couplings to fermions and bosons, as well as anomalous contributions to loop-induced production and decay modes, are presented. All measurements are consistent with expectations for the Standard Model Higgs boson
    • 

    corecore