3,781 research outputs found

    The centre and periphery of conscious thought

    Get PDF
    This paper is about whether shifts in attention can alter what it is like to think. I begin by taking up the hypothesis that attention structures consciousness into a centre and a periphery, following Watzl's (2014; 2017) understanding of the distinction between the centre and periphery of the field of consciousness. Then I show that introspection leads to divided results about whether attention structures conscious thought into a centre and a periphery -- remarks by Martin (1997) and Phillips (2012) suggest a negative answer, whereas remarks by Maher (1923) and Chudnoff (2013) suggest a positive answer. Lastly, I argue that there is behavioural evidence that lends weight to the 'yes' side of the introspective dispute. My argument makes use of Garavan's (1998) study of forming and maintaining two mental counts at once

    Universal hinges and the bounds of sense

    Get PDF
    According to DaniĆØle Moyal-Sharrock, Wittgensteinā€™s On Certainty presents a theory of hinges, and hinges have a role to play in a foundationalist epistemology (2013). Michael Williams (2005) and Annalisa Coliva (2013 ) have claimed that the hinges are not suitable to play such a role as they are not shared universally. Moyal-Sharrock has replied that a subset of the hinges is suitable to play such a role: the ā€œuniversalā€ hinges. I argue that for Moyal-Sharrockā€™s reply to be sustained, she must construe the set of universal hinges much more narrowly than she does currently. For instance, Moyal-Sharrock claims that ā€œI have a brainā€ is a universal hinge, which consigns people who know nothing about brains to stand outside the bounds of sense. I also provide a novel way of thinking about the universal hinges, which I argue is better textually motivated than Moyal-Sharrockā€™s own way, and which provides a set of hinges more suitable to play a role in foundationalist epistemology

    Thermo-Resistive Instability of Hot Planetary Atmospheres

    Full text link
    The atmospheres of hot Jupiters and other strongly-forced exoplanets are susceptible to a thermal instability in the presence of ohmic dissipation, weak magnetic drag and strong winds. The instability occurs in radiatively-dominated atmospheric regions when the ohmic dissipation rate increases with temperature faster than the radiative (cooling) rate. The instability domain covers a specific range of atmospheric pressures and temperatures, typically P ~ 3-300 mbar and T ~ 1500-2500K for hot Jupiters, which makes it a candidate mechanism to explain the dayside thermal "inversions" inferred for a number of such exoplanets. The instability is suppressed by high levels of non-thermal photoionization, in possible agreement with a recently established observational trend. We highlight several shortcomings of the instability treatment presented here. Understanding the emergence and outcome of the instability, which should result in locally hotter atmospheres with stronger levels of drag, will require global non-linear atmospheric models with adequate MHD prescriptions.Comment: 13 pages, 3 figures, accepted for publication in ApJ

    Exoplanet albedo spectra and colors as a function of planet phase, separation, and metallicity

    Get PDF
    First generation optical coronagraphic telescopes will obtain images of cool gas and ice giant exoplanets around nearby stars. The albedo spectra of exoplanets at planet-star separations larger than about 1 AU are dominated by reflected light to beyond 1 {\mu}m and are punctuated by molecular absorption features. We consider how exoplanet albedo spectra and colors vary as a function of planet-star separation, metallicity, mass, and observed phase for Jupiter and Neptune analogs from 0.35 to 1 {\mu}m. We model Jupiter analogs with 1x and 3x the solar abundance of heavy elements, and Neptune analogs with 10x and 30x. Our model planets orbit a solar analog parent star at separations of 0.8 AU, 2 AU, 5 AU, and 10 AU. We use a radiative-convective model to compute temperature-pressure profiles. The giant exoplanets are cloud-free at 0.8 AU, have H2O clouds at 2 AU, and have both NH3 and H2O clouds at 5 AU and 10 AU. For each model planet we compute moderate resolution spectra as a function of phase. The presence and structure of clouds strongly influence the spectra. Since the planet images will be unresolved, their phase may not be obvious, and multiple observations will be needed to discriminate between the effects of planet-star separation, metallicity, and phase. We consider the range of these combined effects on spectra and colors. For example, we find that the spectral influence of clouds depends more on planet-star separation and hence temperature than metallicity, and it is easier to discriminate between cloudy 1x and 3x Jupiters than between 10x and 30x Neptunes. In addition to alkalis and methane, our Jupiter models show H2O absorption features near 0.94 {\mu}m. We also predict that giant exoplanets receiving greater insolation than Jupiter will exhibit higher equator to pole temperature gradients than are found on Jupiter and thus may have differing atmospheric dynamics.Comment: 62 pages, 19 figures, 6 tables Accepted for publication in Ap

    Effects of Helium Phase Separation on the Evolution of Giant Planets

    Full text link
    We present the first models of Saturn and Jupiter to couple their evolution to both a radiative-atmosphere grid and to high-pressure phase diagrams of hydrogen with helium. The purpose of these models is to quantify the evolutionary effects of helium phase separation in Saturn's deep interior. We find that prior calculated phase diagrams in which Saturn's interior reaches a region of predicted helium immiscibility do not allow enough energy release to prolong Saturn's cooling to its known age and effective temperature. We explore modifications to published phase diagrams that would lead to greater energy release, and find a modified H-He phase diagram that is physically reasonable, leads to the correct extension of Saturn's cooling, and predicts an atmospheric helium mass fraction Y_atmos in agreement with recent estimates. We then expand our inhomogeneous evolutionary models to show that hypothetical extrasolar giant planets in the 0.15 to 3.0 Jupiter mass range may have T_effs 10-15 K greater than one would predict with models that do not incorporate helium phase separation.Comment: 4 pages. Contribution to 'The Search for Other Worlds', Oct 2003, University of Marylan

    Bayesian Analysis of Hot Jupiter Radius Anomalies: Evidence for Ohmic Dissipation?

    Full text link
    The cause of hot Jupiter radius inflation, where giant planets with TeqT_{\rm eq} >1000>1000 K are significantly larger than expected, is an open question and the subject of many proposed explanations. Rather than examine these models individually, this work seeks to characterize the anomalous heating as a function of incident flux, Ļµ(F)\epsilon(F), needed to inflate the population of planets to their observed sizes. We then compare that result to theoretical predictions for various models. We examine the population of about 300 giant planets with well-determined masses and radii and apply thermal evolution and Bayesian statistical models to infer the anomalous power as a function of incident flux that best reproduces the observed radii. First, we observe that the inflation of planets below about M=0.5 \;\rm{M}_\rm{J} appears very different than their higher mass counterparts, perhaps as the result of mass loss or an inefficient heating mechanism. As such, we exclude planets below this threshold. Next, we show with strong significance that Ļµ(F)\epsilon(F) increases with TeqT_{\rm{eq}} towards a maximum of āˆ¼2.5%\sim 2.5\% at Teqā‰ˆ1500T_{\rm{eq}} \approx 1500 K, and then decreases as temperatures increase further, falling to āˆ¼0.2%\sim0.2\% at T_\rm{eff}= 2500 K. This high-flux decrease in inflation efficiency was predicted by the Ohmic dissipation model of giant planet inflation but not other models. We also explicitly check the thermal tides model and find that it predicts far more variance in radii than is observed. Thus, our results provide evidence for the Ohmic dissipation model and a functional form for Ļµ(F)\epsilon(F) that any future theories of hot Jupiter radii can be tested against.Comment: 14 pages, 14 figures, accepted to The Astronomical Journal. This revision revises the description of statistical methods for clarity, but the conclusions remain the sam

    Understanding the Mass-Radius Relation for Sub-Neptunes: Radius as a Proxy for Composition

    Full text link
    Transiting planet surveys like Kepler have provided a wealth of information on the distribution of planetary radii, particularly for the new populations of super-Earth and sub-Neptune sized planets. In order to aid in the physical interpretation of these radii, we compute model radii for low-mass rocky planets with hydrogen-helium envelopes. We provide model radii for planets 1-20 Earth masses, with envelope fractions from 0.01-20%, levels of irradiation 0.1-1000x Earth's, and ages from 100 Myr to 10 Gyr. In addition we provide simple analytic fits that summarize how radius depends on each of these parameters. Most importantly, we show that at fixed composition, radii show little dependence on mass for planets with more than ~1% of their mass in their envelope. Consequently, planetary radius is to first order a proxy for planetary composition for Neptune and sub-Neptune sized planets. We recast the observed mass-radius relationship as a mass-composition relationship and discuss it in light of traditional core accretion theory. We discuss the transition from rocky super-Earths to sub-Neptune planets with large volatile envelopes. We suggest 1.75 Earth radii as a physically motivated dividing line between these two populations of planets. Finally, we discuss these results in light of the observed radius occurrence distribution found by Kepler.Comment: 17 pages, 9 figures, 7 tables, submitted to Ap
    • ā€¦
    corecore