78 research outputs found

    EEG Sleep Slow-Wave Activity as a Mirror of Cortical Maturation

    Get PDF
    Deep (slow wave) sleep shows extensive maturational changes from childhood through adolescence, which is reflected in a decrease of sleep depth measured as the activity of electroencephalographic (EEG) slow waves. This decrease in sleep depth is paralleled by massive synaptic remodeling during adolescence as observed in anatomical studies, which supports the notion that adolescence represents a sensitive period for cortical maturation. To assess the relationship between slow-wave activity (SWA) and cortical maturation, we acquired sleep EEG and magnetic resonance imaging data in children and adolescents between 8 and 19 years. We observed a tight relationship between sleep SWA and a variety of indexes of cortical maturation derived from magnetic resonance (MR) images. Specifically, gray matter volumes in regions correlating positively with the activity of slow waves largely overlapped with brain areas exhibiting an age-dependent decrease in gray matter. The positive relationship between SWA and cortical gray matter was present also for power in other frequency ranges (theta, alpha, sigma, and beta) and other vigilance states (theta during rapid eye movement sleep). Our findings indicate a strong relationship between sleep EEG activity and cortical maturation. We propose that in particular, sleep SWA represents a good marker for structural changes in neuronal networks reflecting cortical maturation during adolescenc

    Evaluation of Sn0.9_{0.9}Fe0.1_{0.1}O2δ_{2‐ δ} as Potential Anode Material for Sodium‐Ion Batteries

    Get PDF
    The introduction of transition metals such as iron in oxides of alloying elements as, for instance, SnO2_2 has been proven to enable higher capacities and superior charge storage performance when used as lithium-ion electrode materials. Herein, we report the evaluation of such electrode materials, precisely (carbon-coated) Sn0.9_{0.9}Fe0.1_{0.1}O2δ_{2−δ}(−C), for sodium-ion battery applications. The comparison with SnO2_2 as reference material reveals the beneficial impact of the presence of iron in the tin oxide lattice, enabling higher specific capacities and a greater reversibility of the de-/sodiation process – just like for lithium-ion battery applications. The overall achievable capacity, however, remains relatively low with about 300 mAh g1^{−1} and up to more than 400 mAh g1^{−1} for Sn0.9_{0.9}Fe0.1_{0.1}O2δ_{2-δ} and Sn0.9_{0.9}Fe0.1_{0.1}O2δ_{2−δ}-C, respectively, compared to the theoretical specific capacity of more than 1,300 mAh g1^{−1} when assuming a completely reversible alloying and conversion reaction. The subsequently performed ex situ/operando XRD and ex situ TEM/EDX analysis unveils that this limited capacity results from an incomplete de-/sodiation reaction, thus, providing valuable insights towards an enhanced understanding of alternative reaction mechanisms for sodium-ion anode material candidates

    Hyperandrogenism and Metabolic Syndrome Are Associated With Changes in Serum-Derived microRNAs in Women With Polycystic Ovary Syndrome

    Get PDF
    Polycystic ovary syndrome (PCOS) remains one of the most common endocrine disorder in premenopausal women with an unfavorable metabolic risk profile. Here, we investigate whether biochemical hyperandrogenism, represented by elevated serum free testosterone, resulted in an aberrant circulating microRNA (miRNAs) expression profile and whether miRNAs can identify those PCOS women with metabolic syndrome (MetS). Accordingly, we measured serum levels of miRNAs as well as biochemical markers related to MetS in a case-control study of 42 PCOS patients and 20 Controls. Patients were diagnosed based on the Rotterdam consensus criteria and stratified based on serum free testosterone levels (≥0.034 nmol/l) into either a normoandrogenic (n = 23) or hyperandrogenic (n = 19) PCOS group. Overall, hyperandrogenic PCOS women were more insulin resistant compared to normoandrogenic PCOS women and had a higher prevalence of MetS. A total of 750 different miRNAs were analyzed using TaqMan Low-Density Arrays. Altered levels of seven miRNAs (miR-485-3p, -1290, -21-3p, -139-3p, -361-5p, -572, and -143-3p) were observed in PCOS patients when compared with healthy Controls. Stratification of PCOS women revealed that 20 miRNAs were differentially expressed between the three groups. Elevated serum free testosterone levels, adjusted for age and BMI, were significantly associated with five miRNAs (miR-1290, -20a-5p, -139-3p, -433-3p, and -361-5p). Using binary logistic regression and receiver operating characteristic curves (ROC), a combination panel of three miRNAs (miR-361-5p, -1225-3p, and -34-3p) could correctly identify all of the MetS cases within the PCOS group. This study is the first to report comprehensive miRNA profiling in different subgroups of PCOS women with respect to MetS and suggests that circulating miRNAs might be useful as diagnostic biomarkers of MetS for a different subset of PCOS

    Contribution of an Aged Microenvironment to Aging-Associated Myeloproliferative Disease

    Get PDF
    The molecular and cellular mechanisms of the age-associated increase in the incidence of acute myeloid leukemia (AML) remain poorly understood. Multiple studies support that the bone marrow (BM) microenvironment has an important influence on leukemia progression. Given that the BM niche itself undergoes extensive functional changes during lifetime, we hypothesized that one mechanism for the age-associated increase in leukemia incidence might be that an aged niche promotes leukemia progression. The most frequent genetic alteration in AML is the t(8;21) translocation, resulting in the expression of the AML1-ETO fusion protein. Expression of the fusion protein in hematopoietic cells results in mice in a myeloproliferative disorder. Testing the role of the age of the niche on leukemia progression, we performed both transplantation and in vitro co-culture experiments. Aged animals transplanted with AML1-ETO positive HSCs presented with a significant increase in the frequency of AML-ETO positive early progenitor cells in BM as well as an increased immature myeloid cell load in blood compared to young recipients. These findings suggest that an aged BM microenvironment allows a relative better expansion of pre-leukemic stem and immature myeloid cells and thus imply that the aged microenvironment plays a role in the elevated incidence of age-associated leukemia

    4D Flow cardiovascular magnetic resonance consensus statement: 2023 update

    Full text link
    Hemodynamic assessment is an integral part of the diagnosis and management of cardiovascular disease. Four-dimensional cardiovascular magnetic resonance flow imaging (4D Flow CMR) allows comprehensive and accurate assessment of flow in a single acquisition. This consensus paper is an update from the 2015 '4D Flow CMR Consensus Statement'. We elaborate on 4D Flow CMR sequence options and imaging considerations. The document aims to assist centers starting out with 4D Flow CMR of the heart and great vessels with advice on acquisition parameters, post-processing workflows and integration into clinical practice. Furthermore, we define minimum quality assurance and validation standards for clinical centers. We also address the challenges faced in quality assurance and validation in the research setting. We also include a checklist for recommended publication standards, specifically for 4D Flow CMR. Finally, we discuss the current limitations and the future of 4D Flow CMR. This updated consensus paper will further facilitate widespread adoption of 4D Flow CMR in the clinical workflow across the globe and aid consistently high-quality publication standards

    Designing Sustainable Urban Futures

    Get PDF
    Many 21st century cities have the potential to be sustainable and resource-saving living spaces when multifunctional structures, well-integrated transportation infrastructure, and democratic governance processes are present. Sustainable urban futures require a focus on the needs of humans and environmental best practices, as well as on the creative scope for community-driven sustainability innovations. This book is based on contributions from science and practice to the international symposium on “Sustainable Urban Development at Different Scales” organized by the Institute for Technology Assessment and Systems Analysis at the Karlsruhe Institute of Technology, Karlsruhe, Germany, in May 2014. The symposium used the global urbanization and reurbanization trend as an opportunity to examine cities as sustainable living spaces. This book identifi es concepts, analytic approaches, and practical applications for the design of sustainable urban futures among multiple disciplines and cultural backgrounds.Viele Städte des 21. Jahrhunderts haben das Potenzial, ein nachhaltiger und ressourcenschonender Lebensraum zu sein, wenn multifunktionale Strukturen, eine gut integrierte Verkehrsinfrastruktur und demokratische Stadtentwicklungsprozesse gegeben sind. Nachhaltige Stadtzukünfte erfordern einen starken Fokus auf die Berücksichtigung menschlicher Bedürfnissen an ihren Lebensraum, auf Umweltfreundlichkeit und Gesundheit sowie die gemeinsame Gestaltung kreativer Freiräume für nachhaltige Praktiken. Diese Buch basiert auf Beiträgen aus Wissenschaft und Praxis zum internationalen Symposium „Sustainable Urban Development at Different Scales“, das im Mai 2014 am Institut für Technikfolgenabschätzung und Systemanalyse am Karlsruher Institut für Technologie stattfand. Das Symposium nahm den globalen Urbanisierungsund Reurbanisierungstrend zum Anlass, um Städte auf unterschiedlichen Maßstabsebenen als nachhaltige Lebensräume zu diskutieren. Dieses Buch bietet Analysen, Konzepte und Ansätze zur Gestaltung nachhaltiger Stadtzukünfte aus der Sicht multipler Disziplinen und vor unterschiedlichen kulturellen Hintergründen

    Height and body-mass index trajectories of school-aged children and adolescents from 1985 to 2019 in 200 countries and territories: a pooled analysis of 2181 population-based studies with 65 million participants

    Get PDF
    Summary Background Comparable global data on health and nutrition of school-aged children and adolescents are scarce. We aimed to estimate age trajectories and time trends in mean height and mean body-mass index (BMI), which measures weight gain beyond what is expected from height gain, for school-aged children and adolescents. Methods For this pooled analysis, we used a database of cardiometabolic risk factors collated by the Non-Communicable Disease Risk Factor Collaboration. We applied a Bayesian hierarchical model to estimate trends from 1985 to 2019 in mean height and mean BMI in 1-year age groups for ages 5–19 years. The model allowed for non-linear changes over time in mean height and mean BMI and for non-linear changes with age of children and adolescents, including periods of rapid growth during adolescence. Findings We pooled data from 2181 population-based studies, with measurements of height and weight in 65 million participants in 200 countries and territories. In 2019, we estimated a difference of 20 cm or higher in mean height of 19-year-old adolescents between countries with the tallest populations (the Netherlands, Montenegro, Estonia, and Bosnia and Herzegovina for boys; and the Netherlands, Montenegro, Denmark, and Iceland for girls) and those with the shortest populations (Timor-Leste, Laos, Solomon Islands, and Papua New Guinea for boys; and Guatemala, Bangladesh, Nepal, and Timor-Leste for girls). In the same year, the difference between the highest mean BMI (in Pacific island countries, Kuwait, Bahrain, The Bahamas, Chile, the USA, and New Zealand for both boys and girls and in South Africa for girls) and lowest mean BMI (in India, Bangladesh, Timor-Leste, Ethiopia, and Chad for boys and girls; and in Japan and Romania for girls) was approximately 9–10 kg/m2. In some countries, children aged 5 years started with healthier height or BMI than the global median and, in some cases, as healthy as the best performing countries, but they became progressively less healthy compared with their comparators as they grew older by not growing as tall (eg, boys in Austria and Barbados, and girls in Belgium and Puerto Rico) or gaining too much weight for their height (eg, girls and boys in Kuwait, Bahrain, Fiji, Jamaica, and Mexico; and girls in South Africa and New Zealand). In other countries, growing children overtook the height of their comparators (eg, Latvia, Czech Republic, Morocco, and Iran) or curbed their weight gain (eg, Italy, France, and Croatia) in late childhood and adolescence. When changes in both height and BMI were considered, girls in South Korea, Vietnam, Saudi Arabia, Turkey, and some central Asian countries (eg, Armenia and Azerbaijan), and boys in central and western Europe (eg, Portugal, Denmark, Poland, and Montenegro) had the healthiest changes in anthropometric status over the past 3·5 decades because, compared with children and adolescents in other countries, they had a much larger gain in height than they did in BMI. The unhealthiest changes—gaining too little height, too much weight for their height compared with children in other countries, or both—occurred in many countries in sub-Saharan Africa, New Zealand, and the USA for boys and girls; in Malaysia and some Pacific island nations for boys; and in Mexico for girls. Interpretation The height and BMI trajectories over age and time of school-aged children and adolescents are highly variable across countries, which indicates heterogeneous nutritional quality and lifelong health advantages and risks
    corecore