341 research outputs found

    Association between footwear use and neglected tropical diseases: a systematic review and meta-analysis

    Get PDF
    BACKGROUND The control of neglected tropical diseases (NTDs) has primarily focused on preventive chemotherapy and case management. Less attention has been placed on the role of ensuring access to adequate water, sanitation, and hygiene and personal preventive measures in reducing exposure to infection. Our aim was to assess whether footwear use was associated with a lower risk of selected NTDs. METHODOLOGY We conducted a systematic review and meta-analysis to assess the association between footwear use and infection or disease for those NTDs for which the route of transmission or occurrence may be through the feet. We included Buruli ulcer, cutaneous larva migrans (CLM), leptospirosis, mycetoma, myiasis, podoconiosis, snakebite, tungiasis, and soil-transmitted helminth (STH) infections, particularly hookworm infection and strongyloidiasis. We searched Medline, Embase, Cochrane, Web of Science, CINAHL Plus, and Popline databases, contacted experts, and hand-searched reference lists for eligible studies. The search was conducted in English without language, publication status, or date restrictions up to January 2014. Studies were eligible for inclusion if they reported a measure of the association between footwear use and the risk of each NTD. Publication bias was assessed using funnel plots. Descriptive study characteristics and methodological quality of the included studies were summarized. For each study outcome, both outcome and exposure data were abstracted and crude and adjusted effect estimates presented. Individual and summary odds ratio (OR) estimates and corresponding 95% confidence intervals (CIs) were calculated as a measure of intervention effect, using random effects meta-analyses. PRINCIPAL FINDINGS Among the 427 studies screened, 53 met our inclusion criteria. Footwear use was significantly associated with a lower odds of infection of Buruli ulcer (OR=0.15; 95% CI: 0.08-0.29), CLM (OR=0.24; 95% CI: 0.06-0.96), tungiasis (OR=0.42; 95% CI: 0.26-0.70), hookworm infection (OR=0.48; 95% CI: 0.37-0.61), any STH infection (OR=0.57; 95% CI: 0.39-0.84), strongyloidiasis (OR=0.56; 95% CI: 0.38-0.83), and leptospirosis (OR=0.59; 95% CI: 0.37-0.94). No significant association between footwear use and podoconiosis (OR=0.63; 95% CI: 0.38-1.05) was found and no data were available for mycetoma, myiasis, and snakebite. The main limitations were evidence of heterogeneity and poor study quality inherent to the observational studies included. CONCLUSIONS/SIGNIFICANCE Our results show that footwear use was associated with a lower odds of several different NTDs. Access to footwear should be prioritized alongside existing NTD interventions to ensure a lasting reduction of multiple NTDs and to accelerate their control and elimination. PROTOCOL REGISTRATION PROSPERO International prospective register of systematic reviews CRD42012003338

    Fast degrading polymer networks based on carboxymethyl chitosan

    Full text link
    [EN] In this work macroporous membrane for mesenchymal stem cells, MSCs, transplant has been developed. The membranes support cell seeding and proliferation and completely degrade in less than one week in "in vitro" culture. The biodegradable material is a polymer network based on carboxymethyl chitosan( a water soluble modification of chitosan) crosslinked by poly(epsilon-caprolactone) PCL, fragments which are susceptible to hydrolytic degradation. Synthesis was performed in solution in a common solvent for the two components of the network. The gel fraction was assessed by extraction in selective solvents. Physical characterization of networks of varying composition included water sorption capacity and the crystallinity of poly(epsilon-caprolactone) in the network. In this way polymer networks are synthesized that lose between 66 +/- 5% and 89 +/- 1% of their mass when immersed in water for 28 days. The same weight loss is attained in enzymatic medium in only 4 days. Porcine bone marrow MSCs were seeded in macroporous membranes to show cell viability, and proliferation up to 7 days culture when the biomaterial is completely dissolved in the medium.Gamiz Gonzalez, MA.; Guldrís-Prada, P.; Antolinos Turpín, CM.; Ródenas Rochina, J.; Vidaurre, A.; Gómez Ribelles, JL. (2017). Fast degrading polymer networks based on carboxymethyl chitosan. Materials Today Communications. 10:54-66. doi:10.1016/j.mtcomm.2017.01.005S54661

    Health inequities: lower socio-economic conditions and higher incidences of intestinal parasites

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Intestinal parasitic infections affect child health and development and slow down growth, while reducing adults' productivity and work capacity. The aim of the present study was to determine and compare the incidences of intestinal parasitic infections and the socio-economic status of two near primary school children in Manisa, a western city of Turkey.</p> <p>Methods</p> <p>A total of 352 children were involved a questionnaire study from a private school (Ülkem Primary School – ÜPS, 116 children) and a community-based school (Şehzadeler Primary School – ŞPS, 236 children). Of these, stool samples could be obtained from a total of 294 students; 97 (83.6%) from ÜPS, and 197 (83.5%) from ŞPS. The wet mount preparations of the stool samples were examined; samples were also fixed in polyvinyl alcohol and examined with modified formalin ethyl acetate sedimentation and trichrome staining techniques. Data were analyzed using SPSS for Windows version 10.0. The chi-squared test was used for the analytic assessment.</p> <p>Results</p> <p>The percentages of the students found to be infected with intestinal parasites, were 78 (39.6%) and 13 (13.4%) in ŞPS and ÜPS, respectively. Totally 91 (31.0%) of the students from both schools were found to be infected with at least one intestinal parasite. <it>Giardia lamblia </it>was found to be the most common pathogenic intestinal parasite and <it>Blastocystis hominis </it>was prevalent independently from the hygienic conditions. The factors which significantly (<it>p </it>< 0.05) increase the incidence of intestinal parasites were uneducated and unemployed mother, lower social status of father, living in crowded houses with insufficient indoor spaces, using the tap water as drinking water, and living at shanty areas.</p> <p>Conclusion</p> <p>Intestinal parasitic infections in school children were found to be a public health problem that increased due to lower socio-economic conditions. We conclude that organization of education seminars including the topics such as prevention of the infectious diseases, improving general hygienic conditions, and application of supportive programs for the parents may be suggested not only to reduce intestinal parasitic infections, but also to elevate the socio-cultural levels.</p

    Search for direct stau production in events with two hadronic tau-leptons in root s=13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of the supersymmetric partners ofτ-leptons (staus) in final stateswith two hadronically decayingτ-leptons is presented. The analysis uses a dataset of pp collisions corresponding to an integrated luminosity of139fb−1, recorded with the ATLAS detector at the LargeHadron Collider at a center-of-mass energy of 13 TeV. No significant deviation from the expected StandardModel background is observed. Limits are derived in scenarios of direct production of stau pairs with eachstau decaying into the stable lightest neutralino and oneτ-lepton in simplified models where the two staumass eigenstates are degenerate. Stau masses from 120 GeV to 390 GeV are excluded at 95% confidencelevel for a massless lightest neutralino

    Exposure assessment of process-related contaminants in food by biomarker monitoring

    Get PDF
    Exposure assessment is a fundamental part of the risk assessment paradigm, but can often present a number of challenges and uncertainties. This is especially the case for process contaminants formed during the processing, e.g. heating of food, since they are in part highly reactive and/or volatile, thus making exposure assessment by analysing contents in food unreliable. New approaches are therefore required to accurately assess consumer exposure and thus better inform the risk assessment. Such novel approaches may include the use of biomarkers, physiologically based kinetic (PBK) modelling-facilitated reverse dosimetry, and/or duplicate diet studies. This review focuses on the state of the art with respect to the use of biomarkers of exposure for the process contaminants acrylamide, 3-MCPD esters, glycidyl esters, furan and acrolein. From the overview presented, it becomes clear that the field of assessing human exposure to process-related contaminants in food by biomarker monitoring is promising and strongly developing. The current state of the art as well as the existing data gaps and challenges for the future were defined. They include (1) using PBK modelling and duplicate diet studies to establish, preferably in humans, correlations between external exposure and biomarkers; (2) elucidation of the possible endogenous formation of the process-related contaminants and the resulting biomarker levels; (3) the influence of inter-individual variations and how to include that in the biomarker-based exposure predictions; (4) the correction for confounding factors; (5) the value of the different biomarkers in relation to exposure scenario’s and risk assessment, and (6) the possibilities of novel methodologies. In spite of these challenges it can be concluded that biomarker-based exposure assessment provides a unique opportunity to more accurately assess consumer exposure to process-related contaminants in food and thus to better inform risk assessment

    Multi-model seascape genomics identifies distinct environmental drivers of selection among sympatric marine species

    Get PDF
    Background As global change and anthropogenic pressures continue to increase, conservation and management increasingly needs to consider species’ potential to adapt to novel environmental conditions. Therefore, it is imperative to characterise the main selective forces acting on ecosystems, and how these may influence the evolutionary potential of populations and species. Using a multi-model seascape genomics approach, we compare putative environmental drivers of selection in three sympatric southern African marine invertebrates with contrasting ecology and life histories: Cape urchin (Parechinus angulosus), Common shore crab (Cyclograpsus punctatus), and Granular limpet (Scutellastra granularis). Results Using pooled (Pool-seq), restriction-site associated DNA sequencing (RAD-seq), and seven outlier detection methods, we characterise genomic variation between populations along a strong biogeographical gradient. Of the three species, only S. granularis showed significant isolation-by-distance, and isolation-by-environment driven by sea surface temperatures (SST). In contrast, sea surface salinity (SSS) and range in air temperature correlated more strongly with genomic variation in C. punctatus and P. angulosus. Differences were also found in genomic structuring between the three species, with outlier loci contributing to two clusters in the East and West Coasts for S. granularis and P. angulosus, but not for C. punctatus. Conclusion The findings illustrate distinct evolutionary potential across species, suggesting that species-specific habitat requirements and responses to environmental stresses may be better predictors of evolutionary patterns than the strong environmental gradients within the region. We also found large discrepancies between outlier detection methodologies, and thus offer a novel multi-model approach to identifying the principal environmental selection forces acting on species. Overall, this work highlights how adding a comparative approach to seascape genomics (both with multiple models and species) can elucidate the intricate evolutionary responses of ecosystems to global change

    Search for High-Mass Resonances Decaying to τν in pp Collisions at √s=13 TeV with the ATLAS Detector

    Get PDF
    A search for high-mass resonances decaying to τν using proton-proton collisions at √s=13 TeV produced by the Large Hadron Collider is presented. Only τ-lepton decays with hadrons in the final state are considered. The data were recorded with the ATLAS detector and correspond to an integrated luminosity of 36.1 fb−1. No statistically significant excess above the standard model expectation is observed; model-independent upper limits are set on the visible τν production cross section. Heavy W′ bosons with masses less than 3.7 TeV in the sequential standard model and masses less than 2.2–3.8 TeV depending on the coupling in the nonuniversal G(221) model are excluded at the 95% credibility level
    corecore