909 research outputs found

    On the Distribution of Salient Objects in Web Images and its Influence on Salient Object Detection

    Get PDF
    It has become apparent that a Gaussian center bias can serve as an important prior for visual saliency detection, which has been demonstrated for predicting human eye fixations and salient object detection. Tseng et al. have shown that the photographer's tendency to place interesting objects in the center is a likely cause for the center bias of eye fixations. We investigate the influence of the photographer's center bias on salient object detection, extending our previous work. We show that the centroid locations of salient objects in photographs of Achanta and Liu's data set in fact correlate strongly with a Gaussian model. This is an important insight, because it provides an empirical motivation and justification for the integration of such a center bias in salient object detection algorithms and helps to understand why Gaussian models are so effective. To assess the influence of the center bias on salient object detection, we integrate an explicit Gaussian center bias model into two state-of-the-art salient object detection algorithms. This way, first, we quantify the influence of the Gaussian center bias on pixel- and segment-based salient object detection. Second, we improve the performance in terms of F1 score, Fb score, area under the recall-precision curve, area under the receiver operating characteristic curve, and hit-rate on the well-known data set by Achanta and Liu. Third, by debiasing Cheng et al.'s region contrast model, we exemplarily demonstrate that implicit center biases are partially responsible for the outstanding performance of state-of-the-art algorithms. Last but not least, as a result of debiasing Cheng et al.'s algorithm, we introduce a non-biased salient object detection method, which is of interest for applications in which the image data is not likely to have a photographer's center bias (e.g., image data of surveillance cameras or autonomous robots)

    New, Improved Bulk-microphysical Schemes for Studying Precipitation Processes in WRF

    Get PDF
    Advances in computing power allow atmospheric prediction models to be mn at progressively finer scales of resolution, using increasingly more sophisticated physical parameterizations and numerical methods. The representation of cloud microphysical processes is a key component of these models, over the past decade both research and operational numerical weather prediction models have started using more complex microphysical schemes that were originally developed for high-resolution cloud-resolving models (CRMs). A recent report to the United States Weather Research Program (USWRP) Science Steering Committee specifically calls for the replacement of implicit cumulus parameterization schemes with explicit bulk schemes in numerical weather prediction (NWP) as part of a community effort to improve quantitative precipitation forecasts (QPF). An improved Goddard bulk microphysical parameterization is implemented into a state-of the-art of next generation of Weather Research and Forecasting (WRF) model. High-resolution model simulations are conducted to examine the impact of microphysical schemes on two different weather events (a midlatitude linear convective system and an Atllan"ic hurricane). The results suggest that microphysics has a major impact on the organization and precipitation processes associated with a summer midlatitude convective line system. The 31CE scheme with a cloud ice-snow-hail configuration led to a better agreement with observation in terms of simulated narrow convective line and rainfall intensity. This is because the 3ICE-hail scheme includes dense ice precipitating (hail) particle with very fast fall speed (over 10 m/s). For an Atlantic hurricane case, varying the microphysical schemes had no significant impact on the track forecast but did affect the intensity (important for air-sea interaction

    Intrapersonal and interpersonal dimensions of cancer perception: a confirmatory factor analysis of the cancer experience and efficacy scale (CEES)

    Get PDF
    Purpose Sociocultural factors influence psychological adjustment to cancer in Asian patients in two major ways: Prioritization of relationships over individual orientations and belief in the efficacy of interpersonal cooperation. We derived and validated among Chinese colorectal cancer (CRC) patients an instrument assessing cancer perceptions to enable the study of the sociocultural processes. Patients and methods Qualitative interviews (n=16) derived 15 items addressing interpersonal experience in Chinese CRC patients' adjustment. These 15 items and 18 corresponding self-referent items were administered to 166 Chinese CRC survivors and subjected to exploratory factor analysis (EFA) to establish the initial scale structure and reliability. The final 29 items, together with other psychometric measures, were administered to a second cohort of 215 CRC patients and subjected to confirmatory factor analysis (CFA). Results EFA (63.35% of the total variance) extracted six factors: Personal strain, socioeconomic strain, emotional strain, personal efficacy, collective efficacy, and proxy efficacy. CFA confirmed the psychometric structure [?2(df)=702.91 (368); Comparative Fit Index=0.95; Nonnormed Fit Index= 0.94; Incremental Fit Index=0.95; standardized root mean square residual=0.08] of the six factors by using a model with two latent factors: Experience and efficacy. All subscales were reliable (a=0.76-0.92). Appropriate correlations with adjustment outcomes (symptom distress, psychological morbidity, and subjective well-being), optimistic personalities, and social relational quality indicated its convergent and divergent validity. Known group comparisons (i.e., age, active treatment, and colostomy) showed its clinical utility. Conclusion The cancer experience and efficacy scale is a valid multidimensional instrument for assessing intrapersonal and interpersonal dimensions of cancer experience in Asian patients, potentiating existing patient-reported outcome measures. © Springer-Verlag 2009.published_or_final_versionSpringer Open Choice, 01 Dec 201

    Functional magnetic resonance imaging (fMRI) changes and saliva production associated with acupuncture at LI-2 acupuncture point: a randomized controlled study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Clinical studies suggest that acupuncture can stimulate saliva production and reduce xerostomia (dry mouth). We were interested in exploring the neuronal substrates involved in such responses.</p> <p>Methods</p> <p>In a randomized, sham acupuncture controlled, subject blinded trial, twenty healthy volunteers received true and sham acupuncture in random order. Cortical regions that were activated or deactivated during the interventions were evaluated by functional magnetic resonance imaging (fMRI). Saliva production was also measured.</p> <p>Results</p> <p>Unilateral manual acupuncture stimulation at LI-2, a point commonly used in clinical practice to treat xerostomia, was associated with bilateral activation of the insula and adjacent operculum. Sham acupuncture at an adjacent site induced neither activation nor deactivation. True acupuncture induced more saliva production than sham acupuncture.</p> <p>Conclusion</p> <p>Acupuncture at LI-2 was associated with neuronal activations absent during sham acupuncture stimulation. Neuroimaging signal changes appear correlated to saliva production.</p

    The effect of iterative model reconstruction on coronary artery calcium quantification

    Get PDF
    Coronary artery calcium (CAC) scoring with computed tomography (CT) is an established tool for quantifying calcified atherosclerotic plaque burden. Despite the widespread use of novel image reconstruction techniques in CT, the effect of iterative model reconstruction on CAC score remains unclear. We sought to assess the impact of iterative model based reconstruction (IMR) on coronary artery calcium quantification as compared to the standard filtered back projection (FBP) algorithm and hybrid iterative reconstruction (HIR). In addition, we aimed to simulate the impact of iterative reconstruction techniques on calcium scoring based risk stratification of a larger asymptomatic population. We studied 63 individuals who underwent CAC scoring. Images were reconstructed with FBP, HIR and IMR and CAC scores were measured. We estimated the cardiovascular risk reclassification rate of IMR versus HIR and FBP in a larger asymptomatic population (n = 504). The median CAC scores were 147.7 (IQR 9.6-582.9), 107.0 (IQR 5.9-526.6) and 115.1 (IQR 9.3-508.3) for FBP, HIR and IMR, respectively. The HIR and IMR resulted in lower CAC scores as compared to FBP (both p < 0.001), however there was no difference between HIR and IMR (p = 0.855). The CAC score decreased by 7.2 % in HIR and 7.3 % in IMR as compared to FBP, resulting in a risk reclassification rate of 2.4 % for both HIR and IMR. The utilization of IMR for CAC scoring reduces the measured calcium quantity. However, the CAC score based risk stratification demonstrated modest reclassification in IMR and HIR versus FBP

    TRY plant trait database - enhanced coverage and open access

    Get PDF
    Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    Multicolour Single Molecule Imaging in Cells with Near Infra-Red Dyes

    Get PDF
    Background: The autofluorescence background of biological samples impedes the detection of single molecules when imaging. The most common method of reducing the background is to use evanescent field excitation, which is incompatible with imaging beyond the surface of biological samples. An alternative would be to use probes that can be excited in the near infra-red region of the spectrum, where autofluorescence is low. Such probes could also increase the number of labels that can be imaged in multicolour single molecule microscopes. Despite being widely used in ensemble imaging, there is a currently a shortage of information available for selecting appropriate commercial near infra-red dyes for single molecule work. It is therefore important to characterise available near infra-red dyes relevant to multicolour single molecule imaging. Methodology/Principal Findings: A range of commercially available near infra-red dyes compatible with multi-colour imaging was screened to find the brightest and most photostable candidates. Image series of immobilised samples of the brightest dyes (Alexa 700, IRDye 700DX, Alexa 790 and IRDye 800CW) were analysed to obtain the mean intensity of single dye molecules, their photobleaching rates and long period blinking kinetics. Using the optimum dye pair, we have demonstrated for the first time widefield, multi-colour, near infra-red single molecule imaging using a supercontinuum light source in MCF-7 cells

    Measurement of the cross-section of high transverse momentum vector bosons reconstructed as single jets and studies of jet substructure in pp collisions at √s = 7 TeV with the ATLAS detector

    Get PDF
    This paper presents a measurement of the cross-section for high transverse momentum W and Z bosons produced in pp collisions and decaying to all-hadronic final states. The data used in the analysis were recorded by the ATLAS detector at the CERN Large Hadron Collider at a centre-of-mass energy of √s = 7 TeV;{\rm Te}{\rm V}andcorrespondtoanintegratedluminosityof and correspond to an integrated luminosity of 4.6\;{\rm f}{{{\rm b}}^{-1}}.ThemeasurementisperformedbyreconstructingtheboostedWorZbosonsinsinglejets.ThereconstructedjetmassisusedtoidentifytheWandZbosons,andajetsubstructuremethodbasedonenergyclusterinformationinthejetcentreofmassframeisusedtosuppressthelargemultijetbackground.ThecrosssectionforeventswithahadronicallydecayingWorZboson,withtransversemomentum. The measurement is performed by reconstructing the boosted W or Z bosons in single jets. The reconstructed jet mass is used to identify the W and Z bosons, and a jet substructure method based on energy cluster information in the jet centre-of-mass frame is used to suppress the large multi-jet background. The cross-section for events with a hadronically decaying W or Z boson, with transverse momentum {{p}_{{\rm T}}}\gt 320\;{\rm Ge}{\rm V}andpseudorapidity and pseudorapidity |\eta |\lt 1.9,ismeasuredtobe, is measured to be {{\sigma }_{W+Z}}=8.5\pm 1.7$ pb and is compared to next-to-leading-order calculations. The selected events are further used to study jet grooming techniques

    Observation of associated near-side and away-side long-range correlations in √sNN=5.02  TeV proton-lead collisions with the ATLAS detector

    Get PDF
    Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02  TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1  μb-1 of data as a function of transverse momentum (pT) and the transverse energy (ΣETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∼0) correlation that grows rapidly with increasing ΣETPb. A long-range “away-side” (Δϕ∼π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ΣETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ΣETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos⁡2Δϕ modulation for all ΣETPb ranges and particle pT

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente
    corecore