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Abstract
In recent years it has become apparent that a Gaussian center bias can serve as an impor-

tant prior for visual saliency detection, which has been demonstrated for predicting human

eye fixations and salient object detection. Tseng et al. have shown that the photographer’s

tendency to place interesting objects in the center is a likely cause for the center bias of eye

fixations. We investigate the influence of the photographer’s center bias on salient object

detection, extending our previous work. We show that the centroid locations of salient

objects in photographs of Achanta and Liu’s data set in fact correlate strongly with a Gauss-

ian model. This is an important insight, because it provides an empirical motivation and justi-

fication for the integration of such a center bias in salient object detection algorithms and

helps to understand why Gaussian models are so effective. To assess the influence of the

center bias on salient object detection, we integrate an explicit Gaussian center bias model

into two state-of-the-art salient object detection algorithms. This way, first, we quantify the

influence of the Gaussian center bias on pixel- and segment-based salient object detection.

Second, we improve the performance in terms of F1 score, Fβ score, area under the recall-

precision curve, area under the receiver operating characteristic curve, and hit-rate on the

well-known data set by Achanta and Liu. Third, by debiasing Cheng et al.’s region contrast

model, we exemplarily demonstrate that implicit center biases are partially responsible for

the outstanding performance of state-of-the-art algorithms. Last but not least, we introduce

a non-biased salient object detection method, which is of interest for applications in which

the image data is not likely to have a photographer’s center bias (e.g., image data of surveil-

lance cameras or autonomous robots).

1 Introduction
Among other influences such as task-specific factors, human attention is attracted to salient sti-
muli. In this context, saliency describes the subjective, perceptual quality that lets some items
in the world stand out from their neighbors and immediately grab our attention. Accordingly,
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the goal of visual saliency detection is to determine what parts of an image are likely to grab the
human attention. The task of “traditional” visual saliency detection is to predict where human
observers look when presented with a scene, which can be recorded using eye tracking equip-
ment (e.g., [1–4]). Liu et al. adapted the traditional definition of visual saliency by incorporat-
ing the high level concept of a salient object into the process of visual attention computation
[5]. Here, a salient object is defined as being the object in an image that attracts most of the
user’s interest such as, for example, the man, the cross, the baseball players and the flowers in
Fig 1. Accordingly, Liu et al. [5] defined the task of salient object detection as the binary labeling
problem of separating the salient object from the background. Thus, in contrast to traditional
visual saliency detection, salient object detection does not just comprise of the task to calculate
the saliency of image regions, but it also incorporates the task to determine and segment the
most salient object in the image. Here, it is important to note that the selection of a salient
object happens consciously by the user whereas the gaze trajectories that are recorded using
eye trackers are the result of mostly unconscious processes. Consequently, also taking into
account that salient objects attract the human gaze (see, e.g., [1]), salient object detection and
predicting where people look are very closely related yet substantially different tasks.

The photographer’s center bias, i.e. the natural tendency of photographers to place the
objects of interest near the center of their composition in order to enhance their focus and size
relative to the background (see Tseng et al. [6]; we would like to note that Tseng et al.—due to
their methodology—did not investigate the exact spatial distribution of the objects that attract
the gaze, since they hired five persons who provided subjective scores from 1 to 5 in terms of
how interesting things were biased toward the image center), has been identified as one cause
for the often reported center bias in eye-tracking data during eye-gaze studies [7–9]. As a con-
sequence, the integration of a center bias has become an increasingly important aspect in visual
saliency models that focus on gaze prediction (e.g., [2, 3, 10]). In contrast, most recently pro-
posed salient object detection algorithms do not incorporate an explicit model of the photogra-
pher’s center bias (see, e.g., [11–14]). A notable exception and closely related to our work is the
work by Jiang et al. [15], in which one of the three main criteria that characterize a salient
object is that “it is most probably placed near the center of the image” [15]. The authors justify
this characterization with the “rule of thirds”, which is one of the most well-known principles
of photographic composition (see, e.g., [16]), and use a Gaussian distance metric as a model.
However, Jiang et al. do neither justify why the rule of thirds would be well represented by a

Fig 1. Illustration of the Achanta/Liu data set: example images (a), the corresponding segmentation
masks (c), the mean over all segmentation masks (d), and the scatter plot of the centroid locations
across all images (b).

doi:10.1371/journal.pone.0130316.g001
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Gaussian distance metric nor do they investigate the quantitative influence of such a Gaussian
center bias. We go beyond following the rule of third and show that the distribution of the
objects’ centroids correlates strongly positively with a 2-dimensional Gaussian distribution.
This means nothing less than that we provide a strong empirical justification for integrating
Gaussian center bias models into salient object detection algorithms. To demonstrate the
importance, we adapt two state-of-the-art salient object detection methods to quantify the
influence of the photographer’s center bias on salient object detection.

The contribution of this paper is twofold: First, we use the salient object data set by Achanta
et al. [11] to investigate the spatial distribution of salient objects in images. This way, in Sec. 3,
we show that it is likely that salient objects in photographs are distributed around the image
center in such a way that the radii are half-Gaussian distributed and the angles are uniformly
distributed. Second, in Sec. 4, we explicitly integrate Gaussian center bias models in two
recently proposed salient object detection methods: The pixel-based maximum symmetric sur-
round salient object detection by Achanta et al. [12] and the segment-based region contrast
method by Cheng et al. [14]. In order to measure the influence, we use the following evaluation

measures: The maximum F1 score, the maximum Fβ score with b ¼ ffiffiffiffiffiffiffi
0:3

p
[11], the area-under-

curve of the precision-recall curve, the AUC of the receiver operating characteristic (ROC
AUC), and the hit-rate. In summary, the integration of the center bias model increases the
ROC AUC by 2% and the performance with respect to all remaining measures by roughly 5%.
Thus, we further advance the state-of-the-art of pixel-based as well as segment-based salient
object detection. By modifying Cheng et al.’s region contrast model [14], first, we obtained a
non-biased salient object detection algorithm that is based on region contrast and, second, we
exemplarily demonstrate that implicit center biases can already be found in well-performing,
state-of-the-art salient object detection algorithms and substantially influence the performance.
This is important to consider when comparing and selecting algorithms for applications in
which the data is not necessarily biased towards the center.

The remainder of this paper is organized as follows: In Sec. 2, we provide an overview of
related work. Subsequently, in Sec. 3, we introduce and investigate our hypotheses about the
spatial distribution of salient objects. Then, in Sec. 4, we integrate our hypotheses into two
recently proposed salient object detection methods and evaluate the influence on the salient
object detection performance. We conclude with a short summary and discussion in Sec. 5.
Furthermore, please feel free to check the supplemental material for additional information
such as, e.g., further evaluation results.

2 RelatedWork
We focus on the most recent related work that addresses bottom-up saliency detection with an
emphasis on salient object detection (see, e.g., [17] for a more general overview of computa-
tional attention models). Such methods may be biologically motivated, or purely computa-
tional, or involve both aspects. In 2009, Achanta et al. [11, 12] introduced a salient object
detection approach that basically relies on the difference of pixels to the average color and
intensity value. In order to evaluate their approach, they selected a sub-set of 1000 images of
the image data set that was collected from the web by Liu et al. [5] and calculated segmentation
masks of the salient objects that were marked by 9 participants using (rough) rectangle annota-
tions [5]. Please note that this procedure also means that during the manual data set annotation
the selection of the salient object happens mostly conscious whereas gaze trajectories that are
recorded using eye trackers are a result of a mostly unconscious process. Since it was created,
the salient object data set by Achanta et al. serves as reference data set to evaluate methods for
salient object detection (see, e.g., [11–14]). Liu et al. [5] and Alexe et al. [18] approach salient
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object detection using machine learning. To this end, Liu et al. [5] combine multi-scale con-
trast, center-surround histograms, and color spatial-distributions with conditional random
fields. Similarly, Alexe et al. [18] combine multi-scale saliency, color contrast, edge density, and
superpixels in a Bayesian framework. Closely related to Bayesian surprise [19], Klein et al. [13]
use the Kullback-Leibler Divergence of the center and surround image patch histograms to cal-
culate the saliency. Cheng et al. [14] use segmentation to define a regional contrast-based
method, which simultaneously evaluates global contrast differences and spatial coherence.
Here, we can differentiate between algorithms that rely on segmentation-based (e.g., [14, 18])
and pixel-based contrast measures (e.g., [11–13]). Closely related to our work on the quantita-
tive influence of the center bias on salient object detection is the work by Jiang et al. [15] and
most recently Borji et al. [20]. In Jiang et al.’s work [15] one of the main criteria that character-
ize a salient object is that “it is most probably placed near the center of the image”, which is jus-
tified with the “rule of thirds”. Most recently, Borji et al. [20] evaluated several salient object
detection models and also performed tests with an additive Gaussian center bias and conclude
that the resulting “change in accuracy is not significant and does not alter model rankings”.
But, this neglects the possibility that well-performing models already have an integrated,
implicit center bias, which—as one part of our work—we demonstrate exemplarily to be the
case for Cheng et al.’s region contrast algorithm [14]. Furthermore, there exist several
approaches that explicitly integrate a center bias, but do not provide a quantitative evaluation
of its influence nor an empirical justification of the chosen model (e.g., [21]). In this paper, we
adapt the pixel-based method by Achanta et al. [12] and the segmentation-based method by
Cheng et al. [14] to incorporate a model of the photographer-related center bias and quantify
the influence of the center bias on the performance. Furthermore, Borji et al. [20] do not pro-
vide an empirical justification why a Gaussian distribution is an appropriate center bias model,
which is another part of the work described in this paper.

It has been observed in several studies that the visual attention of human participants in nat-
ural scenes is biased toward the center of static images and videos (see, e.g., [8, 9, 22]). One pos-
sible bottom-up cause of the bias is intrinsic bottom-up visual saliency as predicted by
computational saliency models. One possible top-down cause of the center bias is known as
photographer bias (see, e.g., [7–9]), which describes the natural tendency of photographers to
place objects of interest near the center of their composition. In fact, what the photographer
considers interesting may also be highly bottom-up salient. Additionally, the photographer
bias may lead to a viewing strategy bias [23], which means that viewers may orient their atten-
tion more often toward the center of the scene, because they expect salient or interesting objects
to be placed there. Thus, since in natural images and videos the distribution of objects of inter-
est and thus saliency is usually biased toward the center, it is often unclear how much the
saliency actually contributes in guiding attention. It is possible that people look at the center
for reasons other than saliency, but their gaze happens to fall on salient locations. Therefore,
this center bias may result in overestimating the influence of saliency computed by the model
and contaminate the evaluation of how visual saliency may guide orienting behavior. Recently,
Tseng et al. [6] were able to demonstrate quantitatively that center bias is correlated strongly
with photographer bias and is influenced by viewing strategy at scene onset. Furthermore, e.g.,
they were able to show that motor bias had no effect. However, they did not evaluate and com-
putationally model how specifically the objects that attract the gaze are distributed spatially in
the image. Instead, Tseng et al. hired five naive participants to provide subjective scores from 1
to 5 in terms of how interesting things were biased toward the image center [6]. In this paper,
we use the data set by Achanta et al. [11] to investigate the distribution of salient objects in
photographs and then evaluate the influence on two state-of-the-art salient object detection
models.
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3 Center Bias Model
To investigate the spatial distribution of salient objects in photographs collected from the web,
we use the manually annotated segmentation masks by Achanta et al. [11, 12] that mark the
salient objects in 1000 images of the salient object data set by Liu et al. [5]. More specifically,
we use the segmentation masks to determine the centroids of all salient objects in data set and
analyze the centroids’ spatial distribution. The images in the data set by Liu et al. [5] have been
collected from a variety of sources, mostly from image forums and image search engines. Liu
et al. collected more than 60,000 images and subsequently selected an image subset in which all
images contain a salient object or a distinctive foreground object [5]. Nine users marked the
salient objects using (rough) bounding boxes and the salient objects in the image database have
been defined based on the “majority agreement”. However, as a consequence of the selection
process, the data set does not include images without distinct salient objects. This is an impor-
tant aspect to consider when trying to generalize the results reported on Achanta et al.’s and
Liu et al.’s data set to other data sets or application areas.

In order to statistically analyze the 2-dimensional spatial distribution of the salient objects’
centroids, we first identify the center of the spatial distribution. Then, given the distribution’s
center, we can use a polar coordinate system to independently analyze the distribution of the
angles and distances between the center and the salient objects.

3.1 The Center
Our model is based on a polar coordinate system that has its pole at the image center. Since the
images in Achanta’s data set have varying widths and heights, we use in the following normal-
ized Cartesian image coordinates in the range [0, 1] × [0, 1]. The mean salient object centroid
location is [0.5021, 0.5024]T and the corresponding covariance matrix is [0.0223, −0.0008;
−0.0008, 0.0214]. Thus, we can motivate the use of a polar coordinate system that has its pole
at [0.5, 0.5]T to represent all locations relative to the expected distribution’s mode.

3.2 The Angles are Distributed Uniformly
Our first model hypothesis is that the centroids’ angles in the specified polar coordinate system
are uniformly distributed in [−π, π].

In order to investigate the hypothesis, we use a Quantile-Quantile (Q-Q) plot as a graphical
method to compare probability distributions (see [24]). In Q-Q plots the quantiles of the sam-
ples of two distributions are plotted against each other. Thus, the more similar the two distribu-
tions are, the better the points in the Q-Q plot will approximate the line f(x) = x. We calculate
the Q-Q plot of the salient object location angles in our polar coordinate system versus uni-
formly drawn samples in [−π, π], see Fig 2 (left). The apparent linearity of the plotted Q-Q
points supports the hypothesis that the angles are distributed uniformly.

We can quantify the observed linearity, see Fig 2 (left), to analyze the correlation between
the model distribution and the data samples using probability plot correlation coefficients
(PPCC) [24]. The PPCC is the correlation coefficient between the paired quantiles and mea-
sures the agreement of the fitted distribution with the observed data (i.e., goodness-of-fit). The
closer the correlation coefficient is to one, the higher the positive correlation and the more
likely the distributions are shifted and/or scaled versions of each other. Furthermore, by com-
paring against critical values of the PPCC (see [25] and [24]), we can use the PPCC as a statisti-
cal test, which is closely related to the Shapiro-Wilk test [26] and can reject the hypothesis that
the data samples match the assumed model distribution. Furthermore, we can use the correla-
tion to test the hypothesis of no correlation by transforming the correlation to create a t-
statistic.
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The obvious linearity of the Q-Q plot, see Fig 2 (left), is reflected by a PPCC of 0.9988 (mean
of several runs withN = 1000 uniform randomly selected samples), which is substantially higher
than the critical value of 0.8880 (see [25]) and thus the hypothesis of identical distributions can
not be rejected. Furthermore, the hypothesis of no correlation is rejected at α = 0.05 (p = 0).

3.3 The Radii follow a Half-Gaussian Distribution
Our second model hypothesis is that the radii of the salient object locations follow a half-Gauss-
ian distribution. We have to consider a half-Gaussian distribution in the interval [0,1], because
the radius—as a length—is by definition positive. If we consider the image borders, we could
assume a two-sided truncated distribution, but we have three reasons to work with a one-sided
model: The variance of the radii seems sufficiently small, the “true” centroid of the salient object
may be outside the image borders (i.e., parts of the salient object can be truncated by the image
borders), and it facilitates the use of various, well-known statistical tests (see [27]).

We can use a Q-Q plot against a half-Gaussian distribution to graphically assess the hypoth-
esis, see Fig 2 (middle). The linearity of the points suggests that the radii are distributed accord-
ing to a half-Gaussian distribution. The visible outliers in the upper-right are caused by less
than 30 centroids that are highly likely to be disturbed by the image borders. Please be aware of
the fact that it is not necessary to know the exact distribution parameters when working with
Q-Q plots as long as the distributions are linearly related (see [24]). Furthermore, we transform
the polar coordinates in such a way that they represent the same point with a combination of
positive angles in [0, π] and radii in [−1,1]. This way, we can compare the distribution of the
transformed radii against a normal distribution with its mode and mean at 0, see Fig 2 (right).

The obvious correlation that is visible in the Q-Q plots, see Fig 2 (middle and right), is
reflected by a PPCC of 0.9987, which is above the critical value of 0.9984 (see [24]). The
hypothesis of no correlation is rejected at α = 0.05 (p = 0).

4 Quantifying the Influence on Salient Object Detection
To assess the influence of the center bias on pixel- and object-based salient object detection, we
integrate a Gaussian center bias into the algorithms by Achanta et al. [12] and Cheng at al. [14].

4.1 Center Biased Saliency Models
Pixel-based. As a pixel-based model, we use maximum symmetric surround saliency

detection by Achanta et al. [12] in combination with a Gaussian center bias map (cf., e.g., [3,
10]). To this end, we define the center bias saliency map SC 2 RM×N

SCðx; yÞ ¼ gðmx � x; my � y; sx; syÞ with ð1Þ

Fig 2. Quantile-Quantile (Q-Q) plots of the angles versus a uniform distribution (left), radii versus a half-Gaussian distribution (middle),
transformed radii (see Sec. 3.3) versus a normal distribution (right).

doi:10.1371/journal.pone.0130316.g002
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gðx; y; sx; syÞ ¼ 1ffiffiffiffiffiffi
2p

p
sx

exp � 1

2

x2

s2
x

� �

� 1ffiffiffiffiffiffi
2p

p
sy

exp � 1

2

y2

s2
y

( ) ð2Þ

where (x, y) is the pixel coordinate, μ = (μx, μy) is the image center’s coordinate, and σx and σy
are the standard deviation in x- and y-direction depending on the image width and height,
respectively.

In order to investigate the influence of the center bias, we investigate different, plausible
strategies to investigate the combination of the bottom-up and center bias saliency maps SB
and SC, respectively:

SP ¼ f ðSC; SBÞ ð3Þ

where f is the chosen center bias integration scheme.
We consider the following schemes, cf. [4]: First, a convex, linear integration, i.e. f+(SC, SB)

= wCSC + wBSB with wB þ wC ¼ 1ðwB;wC 2 Rþ
0 Þ. Second, multiplicative integration as a

supra-linear combination method, i.e. f°(SC, SB) = SC°SB, where ° denotes the Hadamard prod-
uct. Third, the minimum as a further, alternative supra-linear combination, i.e. f#(SC, SB) =
min(SC, SB). Fourth, the maximum to realize a late, sub-linear combination scheme, i.e. f"(SC,
SB) = max(SC, SB). All these schemes are also related to different Fuzzy logic interpretations,
which might provide a common theoretical framework and interpretation throughout later
applications (e.g., [28]). To improve the readability, we refer to the linear combination for
explicit center bias integration—unless stated otherwise, of course—in the following.

Segmentation-based. As a segmentation-based model, we adapt Cheng et al.’s region con-
trast model [14]. This model is particularly interesting, because it already provides state-of-the-
art performance, which is partially caused by an implicit (i.e., unmotivated, undiscussed and
potentially unknowingly introduced by the authors) center bias as we will show in the follow-
ing. This way, we can observe how the model behaves if we remove the implicit center bias—
which was neither motivated nor explained by the authors—and add an explicit Gaussian cen-
ter bias. The spatially weighted region contrast saliency equation is defined as follows

SSðrkÞ ¼
X
rk 6¼ri

D̂sðrk; riÞwðriÞDrðrk; riÞ with ð4Þ

D̂sðrk; riÞ ¼ exp ð�Dsðrk; riÞ=s2
s Þ ð5Þ

w(ri) is the weight of region ri, which equals the number of pixels in ri—i.e., w(ri) = jrij—to
emphasize color contrast to bigger regions. Dr(�;�) is the color distance metric between the two
regions

Drðr1; r2Þ ¼
X
c1

X
c2

f ðc1;iÞf ðc2;jÞDðci; cjÞ ð6Þ

where f(ck;i) is the (frequentist) probability of the i-th color ck;i among all nk colors in the k-th
region rk, which is determined using a color histogram. The probability of the color inside the
regions f(ck;i) is used as weight to emphasize color differences between dominant colors. D(ci;
cj) measures the distance between the colors and in the following it is defined as being the

Euclidean distance in the CIE Lab color space. Finally, D̂sðrk; riÞ is the spatial distance between
regions rk and ri, where σs controls the spatial weighting. The spatial distance between two
regions is defined as the Euclidean distance between the centroids of the respective regions
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using pixel coordinates that are normalized to the range [0, 1] × [0, 1]. Smaller values of σs
influence the spatial weighting in such a way that the contrast to regions that are farther away
contributes less to the saliency of the current region.

It is this unnormalized Gaussian weighted Euclidean distance D̂sðrk; riÞ that causes an
implicit Gaussian-like center bias (see Figs 3 and 4), because it favors regions whose distances
to the other neighbors are smaller, which is—in general—the case for segments at the center of
the image. Although this biased distance function has a significant impact on the performance,
its choice has not been clearly motivated, discussed, or evaluated by Cheng et al. To remove

this implicit bias, we introduce a normalized, i.e. locally debiased, distance function �Dsðrk; riÞ
that still weights close-by regions higher than further away regions, but does not lead to an

Fig 3. An example illustrating the influence of the implicit center bias in the region contrast method by
Cheng et al. [14]. Left-to-right: Image, region contrast (RC) saliency map, and locally debiased region
contrast (LDRC) saliency map. As can be seen, RC tends to assign a comparatively high saliency to regions
in the center of the image even if these regions exhibit an apparently low perceptual saliency such as, for
example, the space between the hand cart’s wheels in the bottom row.

doi:10.1371/journal.pone.0130316.g003
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implicit center bias

�Dsðrk; riÞ ¼
D̂sðrk; riÞP
ri
D̂sðrk; riÞ

ð7Þ

i:e: 8rk :
X
ri

�Dsðrk; riÞ ¼ 1 ð8Þ

Similar to the pixel-based model (see Sec. 4.1), we can now integrate an explicit center bias
into the segmentation-based model

SSðrkÞ ¼ f
X
rk 6¼ri

�Dsðrk; riÞwðriÞDrðrk; riÞ; gðCðrkÞ; sx; syÞ
 !

ð9Þ

Here, f is the chosen center bias integration function as in Eq 3. Furthermore, C(rk) denotes the
centroid of region rk and g is defined as in Eq 2.

4.2 Evaluation Procedure
Dataset. As for the graphical investigation of our hypotheses using Q-Q plots (see Fig 2),

we use the manually annotated segmentation masks by Achanta et al. [11, 12], see Sec. 3, to
quantify the influence of the Gaussian center bias on salient object detection.

Baseline algorithms. In order to compare our results, we use a set of saliency detection
algorithms that we group into two coarse categories: First, algorithms that were specifically pro-
posed for salient object detection and, second, algorithms that have been proposed and evalu-
ated in other contexts. From the second category, we use: The well-known saliency model by
Itti and Koch [29], Graph-Based Visual Saliency (GBVS) by Harel at al. [30], Context-Aware
Saliency (CAS) by Goferman et al. [31, 32], and the FFT’s spectral residuals (FFT) and DCT
image signatures (DCT) by Hou et al. [33, 34]. For FFT and DCT, we optimized the resolution
at which the saliency maps are calculated, which is the most important algorithm parameter
and has a significant influence on the performance. As baseline for salient object detection algo-
rithms (first category), we use: The Frequency-Tuned model (FT) by Achanta et al. [11] (please

Fig 4. Illustration of the implicit center bias in the method by Cheng et al. [14]. Left: Each pixel shows
the distance weight sum, i.e.

P
ri
D̂ sðrk ; riÞ, to all other pixels in a regular grid. Right: The average weight sum

depending on the centroid location calculated on the Achanta/Liu data set using Felzenszwalb’s
segmentation method.

doi:10.1371/journal.pone.0130316.g004
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note that an erratum regarding their reported results has been published at http://ivrg.epfl.ch/
supplementary_material/RK_CVPR09), the Bonn Information-Theoretic Saliency model
(BITS) by Klein et al. [13], the Maximum Symmetric Surround Saliency (MSSS) model by
Achanta et al. [12], and the Region Contrast (RC) model by Cheng et al. [14] that uses Felzensz-
walb’s image segmentation method [35]. The latter two are the original algorithms we adapted.

Of course, we evaluate our adapted, center biased models: The maximum symmetric sur-
round saliency with center bias (MSSS+CB; see Sec. 4.1) and the region contrast model with
explicit center bias (RC+CB; see Sec. 4.1). In order to investigate the influence of the implicit
center bias in the region contrast model (see Sec. 4.1), we calculate the performance of the locally
debiased region contrast model without and with explicit center bias (LDRC and LDRC+CB,
respectively; see Sec. 4.1). Additionally, as a reference we provide the results for the standalone
segment-based and pixel-based center bias models, i.e. wC = 1 (CBS and CBP, respectively).

If available, we used the reference implementations that have been provided by the authors.
For MSSS we use the C++ implementation by Achanta, because it provides a better perfor-
mance than the basic Matlab implementation. For Itti we use the iLab Neuromorphic Vision
Toolkit (iNVT). We integrated the methods directly into Matlab (mex) in order to avoid quan-
tization and/or compression artifacts that may occur due to saving and loading them as images.
For DCT and FFT, we used the implementations in our publicly available Matlab toolbox [36].
All calculations have been made using double precision arithmetic. To make our results as
reproducible as possible (we have observed that the precision-recall curves of different authors
vary), we will make our implementations and evaluation scripts open source. We would like to
note that our evaluation measure implementations follow the implementations of Weka and
LingPipe. The corresponding precision-recall curves and results of further baseline algorithms
can be seen in Fig 5.

Measures. We can use the binary segmentation masks for saliency evaluation by treating
the saliency maps as binary classifiers. At a specific threshold t we regard all pixels that have a
saliency value above the thresholds as positives and all pixels with values below the thresholds
as negatives. By sweeping over all thresholds min(S)� t�max(S), we can evaluate the perfor-
mance using common binary classifier evaluation measures.

Most commonly, precision-recall curves are used—e.g., by Achanta et al. [11, 12], Cheng
et al. [14], and Klein et al. [13]—to evaluate the salient object detection performance. We use
five evaluation measures to quantify the performance of the algorithms. We calculate the area
under curve (AUC) of the (interpolated) precision-recall curve (PR) and the receiver operating
characteristic (ROC) curve [37]. Complementary to the PR AUC, we calculate the maximum
F1 and F ffiffiffiffi0:3p scores with

Fb ¼ ð1þ b2Þ precision � recall
b2 � precision þ recall

ð10Þ

Fβ with b ¼ ffiffiffiffiffiffiffi
0:3

p
has been proposed by Achanta et al. to weight precision more than recall for

salient object detection [11]. Additionally, we calculate the hit-rate (HR) that measures how
often the pixel with the maximum saliency belongs to the salient object.

4.3 Quantitative Evaluation Results and Discussion
Explicit center bias integration type. How does the performance depend on the chosen

center bias integration? To investigate this question, we tested the minimum, maximum, and
product as alternative combinations. To account for the influence of different value distribu-
tions within the normalized value range, we also weighted the input of the min and max opera-
tion (e.g., Smin

P ¼ minðwCSC;wBSBÞ). The results of the algorithms using different combination
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types are shown in Table 1. The presented results are the results that we achieve with the center
bias weight that results in the highest F1 score.

In Table 1, we can see that the linear combination is the best choice for LDRC+CB. How-
ever, for MSSS+CB and RC+CB the product seems to be the combination that provides the
best performance. Apparently MSSS+CB benefits more from using the product as combination
type than RC+CB. Also interesting to note is that LDRC+CB with the product as combination
achieves similar results to RC. However, LDRC+CB remains the algorithm that provides the
best performance in terms of F1 score and Fβ score whereas RC+CB provides the best perfor-
mance in terms of PR AUC and HR. Interestingly, LDRC+CB and RC+CB achieve a nearly
identical ROC AUC.

Convex center bias weight. How does the weight of the center bias influence the perfor-
mance? To answer this question, we calculated the performance of LDRC+CB, RC+RB, and

Fig 5. Precision-recall curves for all evaluatedmodels with full (top) and limited range of the precision
(bottom). This graphic is best viewed in color.

doi:10.1371/journal.pone.0130316.g005
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MSSS+CB with wC 2 [0, 1] in 0.025 steps. The resulting curves of the F1 score, Fβ score, PR
AUC, ROC AUC, and hit-rate are shown in Fig 6(c), 6(a) and 6(b), respectively.

For each of the three algorithms the values of wC that lead to the optimal F1 score, Fβ score,
PR AUC, and ROC AUC lie within a small interval. In contrast, for all algorithms the value of
wC that achieves the highest hit-rate is outside these intervals and substantially higher. Further-
more, the best weight for each measure depends on the algorithm and varies substantially. It is
interesting to see that small weights only have a minor (yet positive) influence on RC+CB until
a point is reached (roughly at wC = 0.55) where the performance begins to drop significantly.
This becomes especially apparent when comparing the curves of RC+CB, see Fig 6(a), with the
curves of LDRC+CB, see Fig 6(c).

Quantitative comparison. The center bias itself already has a considerable predictive
power, see Table 2, and is relatively close to the performance of FT. However, there is a sub-
stantial performance gap between the standalone center bias models (CBS and CBP) and good
non-biased methods such as, e.g., MSSS and LDRC.

As could be expected, the performance of RC drops substantially if we remove the implicit
center bias as is done by LDRC (see Sec. 4.1), which can best be seen in Table 3. What happens
if we add our explicit center bias model to unbiased models? As can be seen in the performance
difference between MSSS and MSSS+CB as well as the performance difference between LDRC
to LDRC+CB, the performance is substantially increased with respect to all evaluation mea-
sures, see Tables 2 and 3. Interestingly, the relative performance improvement from pixel-
based MSSS to MSSS+CB and segment-based LDRC to LDRC+CB is comparable, see Table 3.
Furthermore, with the exception of HR, the performance of LDRC+CB and RC+CB is nearly
identical with a slight advantage for LDRC+CB (see Tables 2 and 3). This indicates that we did
not lose important information by debiasing the distance metric (LDRC+CB vs RC+CB) and
that the explicit Gaussian center bias model is advantageous compared to the implicit weight
bias (LDRC+CB and RC+CB vs RC).

Table 1. The maximum F1 score, maximum Fβ score, PR AUC (
R
PR), ROCAUC (

R
ROC), and Hit-Rate (HR) that we obtain using different combina-

tion types.

Method Combination F1 Fβ
R
PR

R
ROC HR

LDRC+CB Linear/Convex 0.8034 0.8183 0.8800 0.9624 0.9240

LDRC+CB Max 0.7504 0.7561 0.8108 0.9422 0.8630

LDRC+CB Min 0.7897 0.8049 0.8584 0.9535 0.8880

LDRC+CB Product 0.7883 0.8024 0.8704 0.9578 0.9130

LDRC – 0.7574 0.7675 0.8302 0.9430 0.8680

RC+CB Linear/Convex 0.7973 0.8120 0.8833 0.9620 0.9340

RC+CB Max 0.7855 0.7993 0.8710 0.9568 0.9140

RC+CB Min 0.7962 0.8150 0.8807 0.9603 0.9180

RC+CB Product 0.7974 0.8136 0.8878 0.9623 0.9460

RC – 0.7855 0.7993 0.8710 0.9568 0.9140

MSSS+CB Linear/Convex 0.7490 0.7678 0.8265 0.9495 0.8900

MSSS+CB Max 0.7165 0.7337 0.7849 0.9270 0.8420

MSSS+CB Min 0.7373 0.7606 0.8211 0.9339 0.9140

MSSS+CB Product 0.7523 0.7748 0.8398 0.9445 0.9350

MSSS – 0.7165 0.7337 0.7849 0.9270 0.8420

CBS – 0.5793 0.5764 0.5920 0.8623 0.6980

CBP – 0.5604 0.5452 0.5638 0.8673 0.7120

doi:10.1371/journal.pone.0130316.t001
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In summary, MSSS+CB provides a substantially higher performance than MSSS and outper-
forms, e.g., FT and BITS. RC+CB and LDRC+CB provide a better performance than their unbi-
ased counterparts RC and LDRC, respectively. Furthermore, their performance is very similar
and both outperform all other models. Interestingly, LDRC is the best model without center bias
in our evaluation on Achanta’s data set. This makes LDRC an interesting candidate for applica-
tions in which the image data can not be expected to have a photographer’s center bias (e.g.,
image data of surveillance cameras, autonomous robots, or human-robot interaction [38]).

Statistical significance. One question remains: Does the integration of an explicit center
bias result in a statistically significant performance improvement? To address this question, we
test the performance (i.e., F1, Fβ,

R
PR, and

R
ROC) of LDRC and MSSS with and without an

explicit center bias. For this purpose, we rely on two pairwise, two-sample t-tests: First, we per-
form a two-tailed test to check whether the compared performances with and without an inte-
grated center bias come from distributions with equal means (i.e.,H=: “means are equal”).
Second, we perform a one-tailed test to check whether the performance with an integrated cen-
ter bias is worse than without an integrated center bias, i.e. the center biased performance dis-
tribution’s mode is lower (i.e.,H<: “mean is lower”). If we can reject both hypotheses, then it is
clear that the performance of the algorithm has significantly improved due to the integrated
center bias. All tests are performed at a confidence level of 95%, i.e., α = 5%.

For MSSS, we can reject the hypothesis of equal mean for F1, Fβ,
R
PR, and

R
ROC with pF1 =

0.0285, pFβ = 0.0031, pRPR = 5.252 × 10−7, and pRROC = 2.618 × 10−16, respectively. Additionally,

Fig 6. Illustration of the influence of the weightwC on the performance of RC+CB, LDRC+CB, and MSSS+CB (convex combination).

doi:10.1371/journal.pone.0130316.g006

How Spatial Biases in Web Images Influence Salient Object Detection

PLOS ONE | DOI:10.1371/journal.pone.0130316 July 22, 2015 13 / 16



we can reject the hypothesis that an integrated center bias has a negative influence on the per-
formance with pF1 = 0.0142, pFβ = 0.0015, pRPR = 2.626 × 10−7, and pRROC = 1.309 × 10−16.

Similarly, we can reject the hypothesis that the performance of LDRC with and without cen-
ter bias has an equal mean for F1, Fβ,

R
PR, and

R
ROC with pF1 = 0.0018, pFβ = 2.426 × 10−5,

pRPR = 1.118 × 10−7, and pRROC = 1.555 × 10−5, respectively. And, we can reject the hypothesis
that an integrated center bias has a negative influence on the performance with pF1 =
9.071 × 10−4, pFβ = 1.213 × 10−5, pRPR = 5.590 × 10−8, and pRROC = 7.773 × 10−6.

Consequently, it is apparent that the integration of a center bias can lead to statistically sig-
nificant performance improvements for pixel-based as well as segmentation-based algorithms.

5 Conclusion
We formulated and investigated two hypotheses about the location of salient objects in photo-
graphs: First, the radial centroid distribution around the image center is uniform. Second, the
distances between their centroids and the image center follow a normal distribution. We inves-
tigated these hypotheses using graphical methods, which indicate that our hypotheses are true.
This is an important insight, because it provides a strong empirical motivation and justification
for the widely applied Gaussian center bias models. To investigate the influence of the center
bias on salient object detection, we explicitly integrated the center bias model in two state-of-
the-art salient object detection algorithms. We have shown that the explicitly modeled center

Table 2. The maximum F1 score, maximum Fβ score, PR AUC (
R
PR), ROCAUC (

R
ROC), and Hit-Rate (HR) of the evaluated algorithms (sorted

ascending by Fβ).

Method F1 Fβ
R
PR

R
ROC HR

LDRC+CB 0.8034 0.8183 0.8800 0.9624 0.9240

RC+CB 0.7973 0.8120 0.8833 0.9620 0.9340

RC 0.7855 0.7993 0.8710 0.9568 0.9140

MSSS+CB 0.7490 0.7678 0.8265 0.9495 0.8900

LDRC 0.7574 0.7675 0.8302 0.9430 0.8680

BITS 0.7342 0.7582 0.7589 0.9316 0.7540

MSSS 0.7165 0.7337 0.7849 0.9270 0.8420

FFT 0.6455 0.6375 0.6593 0.8926 0.8080

DCT 0.6472 0.6368 0.6612 0.8962 0.8270

GBVS 0.6403 0.6242 0.6970 0.9088 0.8480

FT 0.5995 0.6009 0.6261 0.8392 0.7100

CBS 0.5793 0.5764 0.5920 0.8623 0.6980

CAS 0.5857 0.5615 0.5888 0.8741 0.6920

CBP 0.5604 0.5452 0.5638 0.8673 0.7120

iNVT 0.3383 0.4012 0.4396 0.5768 0.6870

doi:10.1371/journal.pone.0130316.t002

Table 3. Relative performance (in %) of our adapted algorithms with respect to their baseline.

Method Baseline F1 Fβ
R
PR

R
ROC HR

LDRC RC 96.4 96.0 95.3 98.6 95.0

RC+CB RC 101.5 101.6 101.4 100.5 102.2

LDRC+CB RC 102.3 102.4 101.0 100.6 101.1

LDRC+CB LDRC 106.1 106.6 106.0 102.1 106.5

MSSS+CB MSSS 104.5 104.7 105.3 102.4 105.7

doi:10.1371/journal.pone.0130316.t003
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bias has a significant, positive influence on the performance (in terms of hit-rate, the area
under the precision-recall curve, the area under the receiver operating characteristic curve, the
F1 score, and the Fβ score). Last but not least, by debiasing Cheng et al.’s region contrast model,
we have exemplarily shown that implicit center biases might at least partially be responsible for
the performance of state-of-the-art salient object detection algorithms and as a consequence
we introduced an adapted, non-biased salient object detection algorithm.
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