325 research outputs found

    The SLICK hair locus derived from Senepol cattle confers thermotolerance to intensively managed lactating Holstein cows

    Get PDF
    AbstractThe SLICK haplotype (http://omia.angis.org.au/OMIA001372/9913/) in cattle confers animals with a short and sleek hair coat. Originally identified in Senepol cattle, the gene has been introduced into Holsteins. The objectives of the current study were to determine (1) whether lactating Holsteins with the slick hair phenotype have superior ability for thermoregulation compared with wild-type cows or relatives not inheriting the SLICK haplotype, and (2) whether seasonal depression in milk yield would be reduced in SLICK cows. In experiment 1, diurnal variation in vaginal temperature in the summer was monitored for cows housed in a freestall barn with fans and sprinklers. Vaginal temperatures were lower in slick-haired cows than in relatives and wild-type cows. In experiment 2, acute responses to heat stress were monitored after cows were moved to a dry lot in which the only heat abatement was shade cloth. The increases in rectal temperature and respiration rate caused by heat stress during the day were lower for slick cows than for relatives or wild-type cows. Moreover, sweating rate was higher for slick cows than for cows of the other 2 types. In experiment 3, effects of season of calving (summer vs. winter) on milk yield and composition were determined. Compared with milk yield of cows calving in winter, milk yield during the first 90 d in milk was lower for cows calving in the summer. However, this reduction was less pronounced for slick cows than for wild-type cows. In conclusion, Holsteins with slick hair have superior thermoregulatory ability compared with non-slick animals and experience a less drastic depression in milk yield during the summer

    Improved Approximation Algorithms for (Budgeted) Node-weighted Steiner Problems

    Full text link
    Moss and Rabani[12] study constrained node-weighted Steiner tree problems with two independent weight values associated with each node, namely, cost and prize (or penalty). They give an O(log n)-approximation algorithm for the prize-collecting node-weighted Steiner tree problem (PCST). They use the algorithm for PCST to obtain a bicriteria (2, O(log n))-approximation algorithm for the Budgeted node-weighted Steiner tree problem. Their solution may cost up to twice the budget, but collects a factor Omega(1/log n) of the optimal prize. We improve these results from at least two aspects. Our first main result is a primal-dual O(log h)-approximation algorithm for a more general problem, prize-collecting node-weighted Steiner forest, where we have (h) demands each requesting the connectivity of a pair of vertices. Our algorithm can be seen as a greedy algorithm which reduces the number of demands by choosing a structure with minimum cost-to-reduction ratio. This natural style of argument (also used by Klein and Ravi[10] and Guha et al.[8]) leads to a much simpler algorithm than that of Moss and Rabani[12] for PCST. Our second main contribution is for the Budgeted node-weighted Steiner tree problem, which is also an improvement to [12] and [8]. In the unrooted case, we improve upon an O(log^2(n))-approximation of [8], and present an O(log n)-approximation algorithm without any budget violation. For the rooted case, where a specified vertex has to appear in the solution tree, we improve the bicriteria result of [12] to a bicriteria approximation ratio of (1+eps, O(log n)/(eps^2)) for any positive (possibly subconstant) (eps). That is, for any permissible budget violation (1+eps), we present an algorithm achieving a tradeoff in the guarantee for prize. Indeed, we show that this is almost tight for the natural linear-programming relaxation used by us as well as in [12].Comment: To appear in ICALP 201

    Dedalo: looking for clusters explanations in a labyrinth of Linked Data

    Get PDF
    We present Dedalo, a framework which is able to exploit Linked Data to generate explanations for clusters. In general, any result of a Knowledge Discovery process, including clusters, is interpreted by human experts who use their background knowledge to explain them. However, for someone without such expert knowledge, those results may be difficult to understand. Obtaining a complete and satisfactory explanation becomes a laborious and time-consuming process, involving expertise in possibly different domains. Having said so, not only does the Web of Data contain vast amounts of such background knowledge, but it also natively connects those domains. While the efforts put in the interpretation process can be reduced with the support of Linked Data, how to automatically access the right piece of knowledge in such a big space remains an issue. Dedalo is a framework that dynamically traverses Linked Data to find commonalities that form explanations for items of a cluster. We have developed different strategies (or heuristics) to guide this traversal, reducing the time to get the best explanation. In our experiments, we compare those strategies and demonstrate that Dedalo finds relevant and sophisticated Linked Data explanations from different areas

    Simulations of galactic dynamos

    Full text link
    We review our current understanding of galactic dynamo theory, paying particular attention to numerical simulations both of the mean-field equations and the original three-dimensional equations relevant to describing the magnetic field evolution for a turbulent flow. We emphasize the theoretical difficulties in explaining non-axisymmetric magnetic fields in galaxies and discuss the observational basis for such results in terms of rotation measure analysis. Next, we discuss nonlinear theory, the role of magnetic helicity conservation and magnetic helicity fluxes. This leads to the possibility that galactic magnetic fields may be bi-helical, with opposite signs of helicity and large and small length scales. We discuss their observational signatures and close by discussing the possibilities of explaining the origin of primordial magnetic fields.Comment: 28 pages, 15 figure, to appear in Lecture Notes in Physics "Magnetic fields in diffuse media", Eds. E. de Gouveia Dal Pino and A. Lazaria

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results

    Measurement of the cross section for isolated-photon plus jet production in pp collisions at √s=13 TeV using the ATLAS detector

    Get PDF
    The dynamics of isolated-photon production in association with a jet in proton–proton collisions at a centre-of-mass energy of 13 TeV are studied with the ATLAS detector at the LHC using a dataset with an integrated luminosity of 3.2 fb−1. Photons are required to have transverse energies above 125 GeV. Jets are identified using the anti- algorithm with radius parameter and required to have transverse momenta above 100 GeV. Measurements of isolated-photon plus jet cross sections are presented as functions of the leading-photon transverse energy, the leading-jet transverse momentum, the azimuthal angular separation between the photon and the jet, the photon–jet invariant mass and the scattering angle in the photon–jet centre-of-mass system. Tree-level plus parton-shower predictions from Sherpa and Pythia as well as next-to-leading-order QCD predictions from Jetphox and Sherpa are compared to the measurements

    A search for resonances decaying into a Higgs boson and a new particle X in the XH → qqbb final state with the ATLAS detector

    Get PDF
    A search for heavy resonances decaying into a Higgs boson (H) and a new particle (X) is reported, utilizing 36.1 fb−1 of proton–proton collision data at collected during 2015 and 2016 with the ATLAS detector at the CERN Large Hadron Collider. The particle X is assumed to decay to a pair of light quarks, and the fully hadronic final state is analysed. The search considers the regime of high XH resonance masses, where the X and H bosons are both highly Lorentz-boosted and are each reconstructed using a single jet with large radius parameter. A two-dimensional phase space of XH mass versus X mass is scanned for evidence of a signal, over a range of XH resonance mass values between 1 TeV and 4 TeV, and for X particles with masses from 50 GeV to 1000 GeV. All search results are consistent with the expectations for the background due to Standard Model processes, and 95% CL upper limits are set, as a function of XH and X masses, on the production cross-section of the resonance

    Measurement of the View the tt production cross-section using eÎŒ events with b-tagged jets in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    This paper describes a measurement of the inclusive top quark pair production cross-section (σttÂŻ) with a data sample of 3.2 fb−1 of proton–proton collisions at a centre-of-mass energy of √s = 13 TeV, collected in 2015 by the ATLAS detector at the LHC. This measurement uses events with an opposite-charge electron–muon pair in the final state. Jets containing b-quarks are tagged using an algorithm based on track impact parameters and reconstructed secondary vertices. The numbers of events with exactly one and exactly two b-tagged jets are counted and used to determine simultaneously σttÂŻ and the efficiency to reconstruct and b-tag a jet from a top quark decay, thereby minimising the associated systematic uncertainties. The cross-section is measured to be: σttÂŻ = 818 ± 8 (stat) ± 27 (syst) ± 19 (lumi) ± 12 (beam) pb, where the four uncertainties arise from data statistics, experimental and theoretical systematic effects, the integrated luminosity and the LHC beam energy, giving a total relative uncertainty of 4.4%. The result is consistent with theoretical QCD calculations at next-to-next-to-leading order. A fiducial measurement corresponding to the experimental acceptance of the leptons is also presented

    The performance of the jet trigger for the ATLAS detector during 2011 data taking

    Get PDF
    The performance of the jet trigger for the ATLAS detector at the LHC during the 2011 data taking period is described. During 2011 the LHC provided proton–proton collisions with a centre-of-mass energy of 7 TeV and heavy ion collisions with a 2.76 TeV per nucleon–nucleon collision energy. The ATLAS trigger is a three level system designed to reduce the rate of events from the 40 MHz nominal maximum bunch crossing rate to the approximate 400 Hz which can be written to offline storage. The ATLAS jet trigger is the primary means for the online selection of events containing jets. Events are accepted by the trigger if they contain one or more jets above some transverse energy threshold. During 2011 data taking the jet trigger was fully efficient for jets with transverse energy above 25 GeV for triggers seeded randomly at Level 1. For triggers which require a jet to be identified at each of the three trigger levels, full efficiency is reached for offline jets with transverse energy above 60 GeV. Jets reconstructed in the final trigger level and corresponding to offline jets with transverse energy greater than 60 GeV, are reconstructed with a resolution in transverse energy with respect to offline jets, of better than 4 % in the central region and better than 2.5 % in the forward direction

    Search for dark matter produced in association with a hadronically decaying vector boson in pp collisions at sqrt (s) = 13 TeV with the ATLAS detector

    Get PDF
    A search is presented for dark matter produced in association with a hadronically decaying W or Z boson using 3.2 fb−1 of pp collisions at View the MathML sources=13 TeV recorded by the ATLAS detector at the Large Hadron Collider. Events with a hadronic jet compatible with a W or Z boson and with large missing transverse momentum are analysed. The data are consistent with the Standard Model predictions and are interpreted in terms of both an effective field theory and a simplified model containing dark matter
    • 

    corecore