203 research outputs found

    Desingularization of vortices for the Euler equation

    Full text link
    We study the existence of stationary classical solutions of the incompressible Euler equation in the plane that approximate singular stationnary solutions of this equation. The construction is performed by studying the asymptotics of equation -\eps^2 \Delta u^\eps=(u^\eps-q-\frac{\kappa}{2\pi} \log \frac{1}{\eps})_+^p with Dirichlet boundary conditions and qq a given function. We also study the desingularization of pairs of vortices by minimal energy nodal solutions and the desingularization of rotating vortices.Comment: 40 page

    Solution generating in scalar-tensor theories with a massless scalar field and stiff perfect fluid as a source

    Get PDF
    We present a method for generating solutions in some scalar-tensor theories with a minimally coupled massless scalar field or irrotational stiff perfect fluid as a source. The method is based on the group of symmetries of the dilaton-matter sector in the Einstein frame. In the case of Barker's theory the dilaton-matter sector possesses SU(2) group of symmetries. In the case of Brans-Dicke and the theory with "conformal coupling", the dilaton- matter sector has SL(2,R)SL(2,R) as a group of symmetries. We describe an explicit algorithm for generating exact scalar-tensor solutions from solutions of Einstein-minimally-coupled-scalar-field equations by employing the nonlinear action of the symmetry group of the dilaton-matter sector. In the general case, when the Einstein frame dilaton-matter sector may not possess nontrivial symmetries we also present a solution generating technique which allows us to construct exact scalar-tensor solutions starting with the solutions of Einstein-minimally-coupled-scalar-field equations. As an illustration of the general techniques, examples of explicit exact solutions are constructed. In particular, we construct inhomogeneous cosmological scalar-tensor solutions whose curvature invariants are everywhere regular in space-time. A generalization of the method for scalar-tensor-Maxwell gravity is outlined.Comment: 10 pages,Revtex; v2 extended version, new parts added and some parts rewritten, results presented more concisely, some simple examples of homogeneous solutions replaced with new regular inhomogeneous solutions, typos corrected, references and acknowledgements added, accepted for publication in Phys.Rev.

    Small Corrections to the Tunneling Phase Time Formulation

    Full text link
    After reexamining the above barrier diffusion problem where we notice that the wave packet collision implies the existence of {\em multiple} reflected and transmitted wave packets, we analyze the way of obtaining phase times for tunneling/reflecting particles in a particular colliding configuration where the idea of multiple peak decomposition is recovered. To partially overcome the analytical incongruities which frequently rise up when the stationary phase method is adopted for computing the (tunneling) phase time expressions, we present a theoretical exercise involving a symmetrical collision between two identical wave packets and a unidimensional squared potential barrier where the scattered wave packets can be recomposed by summing the amplitudes of simultaneously reflected and transmitted wave components so that the conditions for applying the stationary phase principle are totally recovered. Lessons concerning the use of the stationary phase method are drawn.Comment: 14 pages, 3 figure

    Dark energy and dark matter from an inhomogeneous dilaton

    Full text link
    A cosmological scenario is proposed where the dark matter (DM) and dark energy (DE) of the universe are two simultaneous manifestations of an inhomogenous dilaton. The equation of state of the field is scale-dependent and pressureless at galactic and larger scales and it has negative pressure as a DE at very large scales. The dilaton drives an inflationary phase followed by a kinetic energy-dominated one, as in the "quintessential inflation" model introduced by Peebles & Vilenkin, and soon after the end of inflation particle production seeds the first inhomogeneities that lead to galaxy formation. The dilaton is trapped near the minimum of the potential where it oscillates like a massive field, and the excess of kinetic energy is dissipated via the mechanism of "gravitational cooling" first introduced by Seidel & Suen. The inhomogeneities therefore behave like solitonic oscillations around the minimum of the potential, known as "oscillatons", that we propose account for most DM in galaxies. Those regions where the dilaton does not transform enough kinetic energy into reheating or carry an excess of it from regions that have cooled, evolve to the tail of the potential as DE, driving the acceleration of the universe.Comment: 9 pages, 8 figures, uses revtex, submitted PR

    Large Extra Dimensions and Decaying KK Recurrences

    Full text link
    We suggest the possibility that in ADD type brane-world scenarios, the higher KK excitations of the graviton may decay to lower ones owing to a breakdown of the conservation of extra dimensional ``momenta'' and study its implications for astrophysics and cosmology. We give an explicit realization of this idea with a bulk scalar field Φ\Phi, whose nonzero KK modes acquire vacuum expectation values. This scenario helps to avoid constraints on large extra dimensions that come from gamma ray flux bounds in the direction of nearby supernovae as well as those coming from diffuse cosmological gamma ray background. It also relaxes the very stringent limits on reheat temperature of the universe in ADD models.Comment: 16 pages, late

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results

    Jet size dependence of single jet suppression in lead-lead collisions at sqrt(s(NN)) = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF
    Measurements of inclusive jet suppression in heavy ion collisions at the LHC provide direct sensitivity to the physics of jet quenching. In a sample of lead-lead collisions at sqrt(s) = 2.76 TeV corresponding to an integrated luminosity of approximately 7 inverse microbarns, ATLAS has measured jets with a calorimeter over the pseudorapidity interval |eta| < 2.1 and over the transverse momentum range 38 < pT < 210 GeV. Jets were reconstructed using the anti-kt algorithm with values for the distance parameter that determines the nominal jet radius of R = 0.2, 0.3, 0.4 and 0.5. The centrality dependence of the jet yield is characterized by the jet "central-to-peripheral ratio," Rcp. Jet production is found to be suppressed by approximately a factor of two in the 10% most central collisions relative to peripheral collisions. Rcp varies smoothly with centrality as characterized by the number of participating nucleons. The observed suppression is only weakly dependent on jet radius and transverse momentum. These results provide the first direct measurement of inclusive jet suppression in heavy ion collisions and complement previous measurements of dijet transverse energy imbalance at the LHC.Comment: 15 pages plus author list (30 pages total), 8 figures, 2 tables, submitted to Physics Letters B. All figures including auxiliary figures are available at http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HION-2011-02

    Team dynamics in emergency surgery teams: results from a first international survey

    Get PDF
    Background: Emergency surgery represents a unique context. Trauma teams are often multidisciplinary and need to operate under extreme stress and time constraints, sometimes with no awareness of the trauma\u2019s causes or the patient\u2019s personal and clinical information. In this perspective, the dynamics of how trauma teams function is fundamental to ensuring the best performance and outcomes. Methods: An online survey was conducted among the World Society of Emergency Surgery members in early 2021. 402 fully filled questionnaires on the topics of knowledge translation dynamics and tools, non-technical skills, and difficulties in teamwork were collected. Data were analyzed using the software R, and reported following the Checklist for Reporting Results of Internet E-Surveys (CHERRIES). Results: Findings highlight how several surgeons are still unsure about the meaning and potential of knowledge translation and its mechanisms. Tools like training, clinical guidelines, and non-technical skills are recognized and used in clinical practice. Others, like patients\u2019 and stakeholders\u2019 engagement, are hardly implemented, despite their increasing importance in the modern healthcare scenario. Several difficulties in working as a team are described, including the lack of time, communication, training, trust, and ego. Discussion: Scientific societies should take the lead in offering training and support about the abovementioned topics. Dedicated educational initiatives, practical cases and experiences, workshops and symposia may allow mitigating the difficulties highlighted by the survey\u2019s participants, boosting the performance of emergency teams. Additional investigation of the survey results and its characteristics may lead to more further specific suggestions and potential solutions

    The performance of the jet trigger for the ATLAS detector during 2011 data taking

    Get PDF
    The performance of the jet trigger for the ATLAS detector at the LHC during the 2011 data taking period is described. During 2011 the LHC provided proton–proton collisions with a centre-of-mass energy of 7 TeV and heavy ion collisions with a 2.76 TeV per nucleon–nucleon collision energy. The ATLAS trigger is a three level system designed to reduce the rate of events from the 40 MHz nominal maximum bunch crossing rate to the approximate 400 Hz which can be written to offline storage. The ATLAS jet trigger is the primary means for the online selection of events containing jets. Events are accepted by the trigger if they contain one or more jets above some transverse energy threshold. During 2011 data taking the jet trigger was fully efficient for jets with transverse energy above 25 GeV for triggers seeded randomly at Level 1. For triggers which require a jet to be identified at each of the three trigger levels, full efficiency is reached for offline jets with transverse energy above 60 GeV. Jets reconstructed in the final trigger level and corresponding to offline jets with transverse energy greater than 60 GeV, are reconstructed with a resolution in transverse energy with respect to offline jets, of better than 4 % in the central region and better than 2.5 % in the forward direction

    Search for strong gravity in multijet final states produced in pp collisions at √s=13 TeV using the ATLAS detector at the LHC

    Get PDF
    A search is conducted for new physics in multijet final states using 3.6 inverse femtobarns of data from proton-proton collisions at √s = 13TeV taken at the CERN Large Hadron Collider with the ATLAS detector. Events are selected containing at least three jets with scalar sum of jet transverse momenta (HT) greater than 1TeV. No excess is seen at large HT and limits are presented on new physics: models which produce final states containing at least three jets and having cross sections larger than 1.6 fb with HT > 5.8 TeV are excluded. Limits are also given in terms of new physics models of strong gravity that hypothesize additional space-time dimensions
    corecore