93 research outputs found

    Efficiency versus equality in bargaining

    Get PDF
    We consider how the outcome of bargaining varies with changes in the trade-off between equality, efficiency, and total-earnings maximization. We observe that subjects avoid an equal-earnings outcome if it is Pareto inefficient; a large proportion of bargaining pairs avoid an equal and Pareto efficient outcome in favor of one giving unequal and total-earnings maximizing payoffs, and this proportion increases when unequal outcomes imply larger earnings to one of the players, even though this also implies higher inequality; finally, we document a compromise effect that violates the independence of irrelevant alternatives condition

    Strong vacuum squeezing from bichromatically driven Kerrlike cavities: from optomechanics to superconducting circuits

    Get PDF
    Squeezed light, displaying less fluctuation than vacuum in some observable, is key in the flourishing field of quantum technologies. Optical or microwave cavities containing a Kerr nonlinearity are known to potentially yield large levels of squeezing, which have been recently observed in optomechanics and nonlinear superconducting circuit platforms. Such Kerr-cavity squeezing however suffers from two fundamental drawbacks. First, optimal squeezing requires working close to turning points of a bistable cycle, which are highly unstable against noise thus rendering optimal squeezing inaccessible. Second, the light field has a macroscopic coherent component corresponding to the pump, making it less versatile than the so-called squeezed vacuum, characterised by a null mean field. Here we prove analytically and numerically that the bichromatic pumping of optomechanical and superconducting circuit cavities removes both limitations. This finding should boost the development of a new generation of robust vacuum squeezers in the microwave and optical domains with current technology

    Regulation of Coronary Blood Flow

    Get PDF
    The heart is uniquely responsible for providing its own blood supply through the coronary circulation. Regulation of coronary blood flow is quite complex and, after over 100 years of dedicated research, is understood to be dictated through multiple mechanisms that include extravascular compressive forces (tissue pressure), coronary perfusion pressure, myogenic, local metabolic, endothelial as well as neural and hormonal influences. While each of these determinants can have profound influence over myocardial perfusion, largely through effects on end-effector ion channels, these mechanisms collectively modulate coronary vascular resistance and act to ensure that the myocardial requirements for oxygen and substrates are adequately provided by the coronary circulation. The purpose of this series of Comprehensive Physiology is to highlight current knowledge regarding the physiologic regulation of coronary blood flow, with emphasis on functional anatomy and the interplay between the physical and biological determinants of myocardial oxygen delivery. © 2017 American Physiological Society. Compr Physiol 7:321-382, 2017

    Organizational Improvisation and Organizational Memory

    Full text link

    Achieving Consistency in the Use of Human Factors Analytic Methods for Reliability Assessment

    No full text

    Mental models of women with breast implants : local complications

    No full text
    Twenty-five women with breast implants participated in semistructured interviews designed to reveal their "mental models" of the processes potentially causing local (ie, nonsystemic) problems. The authors analyzed their responses in terms of an "expert model," circumscribing scientifically relevant information. Most of the women interviewed had something to say about most elements in the expert model. Nonetheless, gaps in their mental models undermined decision making about their implants. One woman misunderstood the terms used by the medical community to describe implant failure (eg, rupture, leak, and bleed). Another exaggerated the implants' vulnerability to direct impacts, such as car accidents. Participants also overestimated their ability to detect localized problems and to select medical remedies. Although they were generally satisfied with their own implants, many participants were dissatisfied with the decision-making processes that lead to their choice. Their interviews are interpreted by the form and content of communications that women with implants need to help them manage their health decisions better

    Mental models of women with breast implants : local complications

    No full text
    Twenty-five women with breast implants participated in semistructured interviews designed to reveal their "mental models" of the processes potentially causing local (ie, nonsystemic) problems. The authors analyzed their responses in terms of an "expert model," circumscribing scientifically relevant information. Most of the women interviewed had something to say about most elements in the expert model. Nonetheless, gaps in their mental models undermined decision making about their implants. One woman misunderstood the terms used by the medical community to describe implant failure (eg, rupture, leak, and bleed). Another exaggerated the implants' vulnerability to direct impacts, such as car accidents. Participants also overestimated their ability to detect localized problems and to select medical remedies. Although they were generally satisfied with their own implants, many participants were dissatisfied with the decision-making processes that lead to their choice. Their interviews are interpreted by the form and content of communications that women with implants need to help them manage their health decisions better
    corecore