121 research outputs found

    Renormalization Group and Decoupling in Curved Space: II. The Standard Model and Beyond

    Full text link
    We continue the study of the renormalization group and decoupling of massive fields in curved space, started in the previous article and analyse the higher derivative sector of the vacuum metric-dependent action of the Standard Model. The QCD sector at low-energies is described in terms of the composite effective fields. For fermions and scalars the massless limit shows perfect correspondence with the conformal anomaly, but similar limit in a massive vector case requires an extra compensating scalar. In all three cases the decoupling goes smoothly and monotonic. A particularly interesting case is the renormalization group flow in the theory with broken supersymmetry, where the sign of one of the beta-functions changes on the way from the UV to IR.Comment: 27 pages, 8 figure

    Observation of the rare decay K_S -> pi^0mu^+mu^-

    Full text link
    A search for the decay K_S -> pi^0mu^+mu^- has been made by the NA48/1 Collaboration at the CERN SPS accelerator. The data were collected during 2002 with a high-intensity K_S beam. Six events were found with a background expectation of 0.22^+0.18_-0.11 event. Using a vector matrix element and unit form factor, the measured branching ratio is B(K_S -> pi^0mu^+mu^-)=[2.9^+1.5_-1.2(stat)+/-0.2(syst)]x10^{-9}.Comment: 19 pages, 8 figures, 4 tables. To be published in Physics Letters

    First Observation and Measurement of the Decay K+- -> pi+- e+ e- gamma

    Get PDF
    Using the full data set of the NA48/2 experiment, the decay K+- -> pi+- e+ e- gamma is observed for the first time, selecting 120 candidates with 7.3 +- 1.7 estimated background events. With K+- -> pi+- pi0D as normalisation channel, the branching ratio is determined in a model-independent way to be Br(K+- -> pi+- e+ e- gamma, m_eegamma > 260 MeV/c^2) = (1.19 +- 0.12_stat +- 0.04_syst) x 10^-8. This measured value and the spectrum of the e+ e- gamma invariant mass allow a comparison with predictions of Chiral Perturbation Theory.Comment: 13 pages, 3 figures. Accepted for publication in Phys.Lett.

    First observation of the KS->pi0 gamma gamma decay

    Get PDF
    Using the NA48 detector at the CERN SPS, 31 KS->pi0 gamma gamma candidates with an estimated background of 13.7 +- 3.2 events have been observed. This first observation leads to a branching ratio of BR(KS->pi0 gamma gamma) = (4.9 +- 1.6(stat) +- 0.9(syst)) x 10^-8 in agreement with Chiral Perturbation theory predictions.Comment: 10 pages, 4 figures submitted to Phys. Lett.

    Electron and Neutron Electric Dipole Moments in the Constrained MSSM

    Full text link
    We analyze the effects of CP-violating phases on the electric dipole moment (EDM) of electron and neutron in the constrained minimal supersymmetric model. We find that the phases phi_{\mu} and phi_{A_0} have to be strongly correlated, in particular for small values of the SUSY mass parameters. We calculate the neutron EDM in two different models, the Quark-Parton Model and the Chiral Quark Model. It turns out that the predictions are quite sensitive to the model used. We show parameter regions in the M_0-M_1/2 plane which are excluded by considering simultaneously the experimental bounds of both electron and neutron EDM, assuming specific values for the phases phi_{\mu} and phi_{A_0}.Comment: 23 pages LaTeX with 8 figures included, using the epsfig-stylefil

    Physics with the KLOE-2 experiment at the upgraded DAϕ\phiNE

    Get PDF
    Investigation at a ϕ\phi--factory can shed light on several debated issues in particle physics. We discuss: i) recent theoretical development and experimental progress in kaon physics relevant for the Standard Model tests in the flavor sector, ii) the sensitivity we can reach in probing CPT and Quantum Mechanics from time evolution of entangled kaon states, iii) the interest for improving on the present measurements of non-leptonic and radiative decays of kaons and eta/etaâ€Č^\prime mesons, iv) the contribution to understand the nature of light scalar mesons, and v) the opportunity to search for narrow di-lepton resonances suggested by recent models proposing a hidden dark-matter sector. We also report on the e+e−e^+ e^- physics in the continuum with the measurements of (multi)hadronic cross sections and the study of gamma gamma processes.Comment: 60 pages, 41 figures; added affiliation for one of the authors; added reference to section

    Muon reconstruction performance of the ATLAS detector in proton–proton collision data at √s = 13 TeV

    Get PDF
    This article documents the performance of the ATLAS muon identification and reconstruction using the LHC dataset recorded at √s = 13 TeV in 2015. Using a large sample of J/ψ→ΌΌ and Z→ΌΌ decays from 3.2 fb−1 of pp collision data, measurements of the reconstruction efficiency, as well as of the momentum scale and resolution, are presented and compared to Monte Carlo simulations. The reconstruction efficiency is measured to be close to 99% over most of the covered phase space (|η| 2.2, the pT resolution for muons from Z→ΌΌ decays is 2.9 % while the precision of the momentum scale for low-pT muons from J/ψ→ΌΌ decays is about 0.2%

    Measurement of the dependence of transverse energy production at large pseudorapidity on the hard-scattering kinematics of proton-proton collisions at √s=2.76 TeV with ATLAS

    Get PDF
    The relationship between jet production in the central region and the underlying-event activity in a pseudorapidity-separated region is studied in 4.0 pb-1 of s=2.76 TeV pp collision data recorded with the ATLAS detector at the LHC. The underlying event is characterised through measurements of the average value of the sum of the transverse energy at large pseudorapidity downstream of one of the protons, which are reported here as a function of hard-scattering kinematic variables. The hard scattering is characterised by the average transverse momentum and pseudorapidity of the two highest transverse momentum jets in the event. The dijet kinematics are used to estimate, on an event-by-event basis, the scaled longitudinal momenta of the hard-scattered partons in the target and projectile beam-protons moving toward and away from the region measuring transverse energy, respectively. Transverse energy production at large pseudorapidity is observed to decrease with a linear dependence on the longitudinal momentum fraction in the target proton and to depend only weakly on that in the projectile proton. The results are compared to the predictions of various Monte Carlo event generators, which qualitatively reproduce the trends observed in data but generally underpredict the overall level of transverse energy at forward pseudorapidity

    Search for strong gravity in multijet final states produced in pp collisions at √s=13 TeV using the ATLAS detector at the LHC

    Get PDF
    A search is conducted for new physics in multijet final states using 3.6 inverse femtobarns of data from proton-proton collisions at √s = 13TeV taken at the CERN Large Hadron Collider with the ATLAS detector. Events are selected containing at least three jets with scalar sum of jet transverse momenta (HT) greater than 1TeV. No excess is seen at large HT and limits are presented on new physics: models which produce final states containing at least three jets and having cross sections larger than 1.6 fb with HT > 5.8 TeV are excluded. Limits are also given in terms of new physics models of strong gravity that hypothesize additional space-time dimensions

    Measurement of the cross section for isolated-photon plus jet production in pp collisions at √s=13 TeV using the ATLAS detector

    Get PDF
    The dynamics of isolated-photon production in association with a jet in proton–proton collisions at a centre-of-mass energy of 13 TeV are studied with the ATLAS detector at the LHC using a dataset with an integrated luminosity of 3.2 fb−1. Photons are required to have transverse energies above 125 GeV. Jets are identified using the anti- algorithm with radius parameter and required to have transverse momenta above 100 GeV. Measurements of isolated-photon plus jet cross sections are presented as functions of the leading-photon transverse energy, the leading-jet transverse momentum, the azimuthal angular separation between the photon and the jet, the photon–jet invariant mass and the scattering angle in the photon–jet centre-of-mass system. Tree-level plus parton-shower predictions from Sherpa and Pythia as well as next-to-leading-order QCD predictions from Jetphox and Sherpa are compared to the measurements
    • 

    corecore