28 research outputs found
Impacts of Poultry House Environment on Poultry Litter Bacterial Community Composition
Viral and bacterial pathogens are a significant economic concern to the US broiler industry and the ecological epicenter for poultry pathogens is the mixture of bedding material, chicken excrement and feathers that comprises the litter of a poultry house. This study used high-throughput sequencing to assess the richness and diversity of poultry litter bacterial communities, and to look for connections between these communities and the environmental characteristics of a poultry house including its history of gangrenous dermatitis (GD). Cluster analysis of 16S rRNA gene sequences revealed differences in the distribution of bacterial phylotypes between Wet and Dry litter samples and between houses. Wet litter contained greater diversity with 90% of total bacterial abundance occurring within the top 214 OTU clusters. In contrast, only 50 clusters accounted for 90% of Dry litter bacterial abundance. The sixth largest OTU cluster across all samples classified as an Arcobacter sp., an emerging human pathogen, occurring in only the Wet litter samples of a house with a modern evaporative cooling system. Ironically, the primary pathogenic clostridial and staphylococcal species associated with GD were not found in any house; however, there were thirteen 16S rRNA gene phylotypes of mostly Gram-positive phyla that were unique to GD-affected houses and primarily occurred in Wet litter samples. Overall, the poultry house environment appeared to substantially impact the composition of litter bacterial communities and may play a key role in the emergence of food-borne pathogens
Geographical and temporal distribution of SARS-CoV-2 clades in the WHO European Region, January to June 2020
We show the distribution of SARS-CoV-2 genetic clades over time and between countries and outline potential genomic surveillance objectives. We applied three available genomic nomenclature systems for SARS-CoV-2 to all sequence data from the WHO European Region available during the COVID-19 pandemic until 10 July 2020. We highlight the importance of real-time sequencing and data dissemination in a pandemic situation. We provide a comparison of the nomenclatures and lay a foundation for future European genomic surveillance of SARS-CoV-2.Peer reviewe
All-sky search for gravitational-wave bursts in the second joint LIGO-Virgo run
We present results from a search for gravitational-wave bursts in the data
collected by the LIGO and Virgo detectors between July 7, 2009 and October 20,
2010: data are analyzed when at least two of the three LIGO-Virgo detectors are
in coincident operation, with a total observation time of 207 days. The
analysis searches for transients of duration < 1 s over the frequency band
64-5000 Hz, without other assumptions on the signal waveform, polarization,
direction or occurrence time. All identified events are consistent with the
expected accidental background. We set frequentist upper limits on the rate of
gravitational-wave bursts by combining this search with the previous LIGO-Virgo
search on the data collected between November 2005 and October 2007. The upper
limit on the rate of strong gravitational-wave bursts at the Earth is 1.3
events per year at 90% confidence. We also present upper limits on source rate
density per year and Mpc^3 for sample populations of standard-candle sources.
As in the previous joint run, typical sensitivities of the search in terms of
the root-sum-squared strain amplitude for these waveforms lie in the range 5
10^-22 Hz^-1/2 to 1 10^-20 Hz^-1/2. The combination of the two joint runs
entails the most sensitive all-sky search for generic gravitational-wave bursts
and synthesizes the results achieved by the initial generation of
interferometric detectors.Comment: 15 pages, 7 figures: data for plots and archived public version at
https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=70814&version=19, see
also the public announcement at
http://www.ligo.org/science/Publication-S6BurstAllSky
Monitoring and data quality assessment of the ATLAS liquid argon calorimeter
The liquid argon calorimeter is a key component of the ATLAS detector installed at the CERN Large Hadron Collider. The primary purpose of this calorimeter is the measurement of electron and photon kinematic properties. It also provides a crucial input for measuring jets and missing transverse momentum. An advanced data monitoring procedure was designed to quickly identify issues that would affect detector performance and ensure that only the best quality data are used for physics analysis. This article presents the validation procedure developed during the 2011 and 2012 LHC data-taking periods, in which more than 98% of the proton-proton luminosity recorded by ATLAS at a centre-of-mass energy of 7-8 TeV had calorimeter data quality suitable for physics analysis
Molecular epidemiology and evolutionary trajectory of emerging echovirus 30, Europe
In 2018, an upsurge in echovirus 30 (E30) infections was reported in Europe. We conducted a large-scale epidemiologic and evolutionary study of 1,329 E30 strains collected in 22 countries in Europe during 2016–2018. Most E30 cases affected persons 0–4 years of age (29%) and 25–34 years of age (27%). Sequences were divided into 6 genetic clades (G1–G6). Most (53%) sequences belonged to G1, followed by G6 (23%), G2 (17%), G4 (4%), G3 (0.3%), and G5 (0.2%). Each clade encompassed unique individual recombinant forms; G1 and G4 displayed >2 unique recombinant forms. Rapid turnover of new clades and recombinant forms occurred over time. Clades G1 and G6 dominated in 2018, suggesting the E30 upsurge was caused by emergence of 2 distinct clades circulating in Europe. Investigation into the mechanisms behind the rapid turnover of E30 is crucial for clarifying the epidemiology and evolution of these enterovirus infections