63 research outputs found

    The Molecular Basis for Antigenic Drift of Human A/H2N2 Influenza Viruses.

    Get PDF
    Influenza A/H2N2 viruses caused a pandemic in 1957 and continued to circulate in humans until 1968. The antigenic evolution of A/H2N2 viruses over time and the amino acid substitutions responsible for this antigenic evolution are not known. Here, the antigenic diversity of a representative set of human A/H2N2 viruses isolated between 1957 and 1968 was characterized. The antigenic change of influenza A/H2N2 viruses during the 12 years that this virus circulated was modest. Two amino acid substitutions, T128D and N139K, located in the head domain of the H2 hemagglutinin (HA) molecule, were identified as important determinants of antigenic change during A/H2N2 virus evolution. The rate of A/H2N2 virus antigenic evolution during the 12-year period after introduction in humans was half that of A/H3N2 viruses, despite similar rates of genetic change.IMPORTANCE While influenza A viruses of subtype H2N2 were at the origin of the Asian influenza pandemic, little is known about the antigenic changes that occurred during the twelve years of circulation in humans, the role of preexisting immunity, and the evolutionary rates of the virus. In this study, the antigenic map derived from hemagglutination inhibition (HI) titers of cell-cultured virus isolates and ferret postinfection sera displayed a directional evolution of viruses away from earlier isolates. Furthermore, individual mutations in close proximity to the receptor-binding site of the HA molecule determined the antigenic reactivity, confirming that individual amino acid substitutions in A/H2N2 viruses can confer major antigenic changes. This study adds to our understanding of virus evolution with respect to antigenic variability, rates of virus evolution, and potential escape mutants of A/H2N2

    Equine Torovirus (BEV) Induces Caspase-Mediated Apoptosis in Infected Cells

    Get PDF
    Toroviruses are gastroenteritis causing agents that infect different animal species and humans. To date, very little is known about how toroviruses cause disease. Here, we describe for the first time that the prototype member of this genus, the equine torovirus Berne virus (BEV), induces apoptosis in infected cells at late times postinfection. Observation of BEV infected cells by electron microscopy revealed that by 24 hours postinfection some cells exhibited morphological characteristics of apoptotic cells. Based on this finding, we analyzed several apoptotic markers, and observed protein synthesis inhibition, rRNA and DNA degradation, nuclear fragmentation, caspase-mediated cleavage of PARP and eIF4GI, and PKR and eIF2α phosphorylation, all these processes taking place after peak virus production. We also determined that both cell death receptor and mitochondrial pathways are involved in the apoptosis process induced by BEV. BEV-induced apoptosis at late times postinfection, once viral progeny are produced, could facilitate viral dissemination in vivo and contribute to viral pathogenesis

    Association between TCF7L2 gene polymorphisms and susceptibility to Type 2 Diabetes Mellitus: a large Human Genome Epidemiology (HuGE) review and meta-analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Transcription factor 7-like 2 (<it>TCF7L2</it>) has been shown to be associated with type 2 diabetes mellitus (T2MD) in multiple ethnic groups in the past two years, but, contradictory results were reported for Chinese and Pima Indian populations. The authors then performed a large meta-analysis of 36 studies examining the association of type 2 diabetes mellitus (T2DM) with polymorphisms in the <it>TCF7L2 </it>gene in various ethnicities, containing rs7903146 C-to-T (IVS3C>T), rs7901695 T-to-C (IVS3T>C), a rs12255372 G-to-T (IVS4G>T), and rs11196205 G-to-C (IVS4G>C) polymorphisms and to evaluate the size of gene effect and the possible genetic mode of action.</p> <p>Methods</p> <p>Literature-based searching was conducted to collect data and three methods, that is, fixed-effects, random-effects and Bayesian multivariate mete-analysis, were performed to pool the odds ratio (<it>OR</it>). Publication bias and study-between heterogeneity were also examined.</p> <p>Results</p> <p>The studies included 35,843 cases of T2DM and 39,123 controls, using mainly primary data. For T2DM and IVS3C>T polymorphism, the Bayesian <it>OR </it>for TT homozygotes and TC heterozygotes versus CC homozygote was 1.968 (95% credible interval (<it>CrI</it>): 1.790, 2.157), 1.406 (95% <it>CrI</it>: 1.341, 1.476), respectively, and the population attributable risk (PAR) for the TT/TC genotypes of this variant is 16.9% for overall. For T2DM and IVS4G>T polymorphism, TT homozygotes and TG heterozygotes versus GG homozygote was 1.885 (95%<it>CrI</it>: 1.698, 2.088), 1.360 (95% <it>CrI</it>: 1.291, 1.433), respectively. Four <it>OR</it>s among these two polymorphisms all yielded significant between-study heterogeneity (P < 0.05) and the main source of heterogeneity was ethnic differences. Data also showed significant associations between T2DM and the other two polymorphisms, but with low heterogeneity (<it>P </it>> 0.10). Pooled <it>OR</it>s fit a codominant, multiplicative genetic model for all the four polymorphisms of <it>TCF7L2 </it>gene, and this model was also confirmed in different ethnic populations when stratification of IVS3C>T and IVS4G>T polymorphisms except for Africans, where a dominant, additive genetic mode is suggested for IVS3C>T polymorphism.</p> <p>Conclusion</p> <p>This meta-analysis demonstrates that four variants of <it>TCF7L2 </it>gene are all associated with T2DM, and indicates a multiplicative genetic model for all the four polymorphisms, as well as suggests the <it>TCF7L2 </it>gene involved in near 1/5 of all T2MD. Potential gene-gene and gene-environmental interactions by which common variants in the <it>TCF7L2 </it>gene influence the risk of T2MD need further exploration.</p

    The trans-ancestral genomic architecture of glycemic traits

    Get PDF
    Glycemic traits are used to diagnose and monitor type 2 diabetes and cardiometabolic health. To date, most genetic studies of glycemic traits have focused on individuals of European ancestry. Here we aggregated genome-wide association studies comprising up to 281,416 individuals without diabetes (30% non-European ancestry) for whom fasting glucose, 2-h glucose after an oral glucose challenge, glycated hemoglobin and fasting insulin data were available. Trans-ancestry and single-ancestry meta-analyses identified 242 loci (99 novel; P < 5 × 10−8), 80% of which had no significant evidence of between-ancestry heterogeneity. Analyses restricted to individuals of European ancestry with equivalent sample size would have led to 24 fewer new loci. Compared with single-ancestry analyses, equivalent-sized trans-ancestry fine-mapping reduced the number of estimated variants in 99% credible sets by a median of 37.5%. Genomic-feature, gene-expression and gene-set analyses revealed distinct biological signatures for each trait, highlighting different underlying biological pathways. Our results increase our understanding of diabetes pathophysiology by using trans-ancestry studies for improved power and resolution

    Plasma and cellular fibronectin: distinct and independent functions during tissue repair

    Get PDF
    Fibronectin (FN) is a ubiquitous extracellular matrix (ECM) glycoprotein that plays vital roles during tissue repair. The plasma form of FN circulates in the blood, and upon tissue injury, is incorporated into fibrin clots to exert effects on platelet function and to mediate hemostasis. Cellular FN is then synthesized and assembled by cells as they migrate into the clot to reconstitute damaged tissue. The assembly of FN into a complex three-dimensional matrix during physiological repair plays a key role not only as a structural scaffold, but also as a regulator of cell function during this stage of tissue repair. FN fibrillogenesis is a complex, stepwise process that is strictly regulated by a multitude of factors. During fibrosis, there is excessive deposition of ECM, of which FN is one of the major components. Aberrant FN-matrix assembly is a major contributing factor to the switch from normal tissue repair to misregulated fibrosis. Understanding the mechanisms involved in FN assembly and how these interplay with cellular, fibrotic and immune responses may reveal targets for the future development of therapies to regulate aberrant tissue-repair processes

    Approaches in biotechnological applications of natural polymers

    Get PDF
    Natural polymers, such as gums and mucilage, are biocompatible, cheap, easily available and non-toxic materials of native origin. These polymers are increasingly preferred over synthetic materials for industrial applications due to their intrinsic properties, as well as they are considered alternative sources of raw materials since they present characteristics of sustainability, biodegradability and biosafety. As definition, gums and mucilages are polysaccharides or complex carbohydrates consisting of one or more monosaccharides or their derivatives linked in bewildering variety of linkages and structures. Natural gums are considered polysaccharides naturally occurring in varieties of plant seeds and exudates, tree or shrub exudates, seaweed extracts, fungi, bacteria, and animal sources. Water-soluble gums, also known as hydrocolloids, are considered exudates and are pathological products; therefore, they do not form a part of cell wall. On the other hand, mucilages are part of cell and physiological products. It is important to highlight that gums represent the largest amounts of polymer materials derived from plants. Gums have enormously large and broad applications in both food and non-food industries, being commonly used as thickening, binding, emulsifying, suspending, stabilizing agents and matrices for drug release in pharmaceutical and cosmetic industries. In the food industry, their gelling properties and the ability to mold edible films and coatings are extensively studied. The use of gums depends on the intrinsic properties that they provide, often at costs below those of synthetic polymers. For upgrading the value of gums, they are being processed into various forms, including the most recent nanomaterials, for various biotechnological applications. Thus, the main natural polymers including galactomannans, cellulose, chitin, agar, carrageenan, alginate, cashew gum, pectin and starch, in addition to the current researches about them are reviewed in this article.. }To the Conselho Nacional de Desenvolvimento Cientfíico e Tecnológico (CNPq) for fellowships (LCBBC and MGCC) and the Coordenação de Aperfeiçoamento de Pessoal de Nvíel Superior (CAPES) (PBSA). This study was supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit, the Project RECI/BBB-EBI/0179/2012 (FCOMP-01-0124-FEDER-027462) and COMPETE 2020 (POCI-01-0145-FEDER-006684) (JAT)

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    The Influence of Age and Sex on Genetic Associations with Adult Body Size and Shape: A Large-Scale Genome-Wide Interaction Study

    Get PDF
    Genome-wide association studies (GWAS) have identified more than 100 genetic variants contributing to BMI, a measure of body size, or waist-to-hip ratio (adjusted for BMI, WHRadjBMI), a measure of body shape. Body size and shape change as people grow older and these changes differ substantially between men and women. To systematically screen for age-and/or sex-specific effects of genetic variants on BMI and WHRadjBMI, we performed meta-analyses of 114 studies (up to 320,485 individuals of European descent) with genome-wide chip and/or Metabochip data by the Genetic Investigation of Anthropometric Traits (GIANT) Consortium. Each study tested the association of up to similar to 2.8M SNPs with BMI and WHRadjBMI in four strata (men &lt;= 50y, men &gt; 50y, women &lt;= 50y, women &gt; 50y) and summary statistics were combined in stratum-specific meta-analyses. We then screened for variants that showed age-specific effects (G x AGE), sex-specific effects (G x SEX) or age-specific effects that differed between men and women (G x AGE x SEX). For BMI, we identified 15 loci (11 previously established for main effects, four novel) that showed significant (FDR&lt; 5%) age-specific effects, of which 11 had larger effects in younger (&lt; 50y) than in older adults (&gt;= 50y). No sex-dependent effects were identified for BMI. For WHRadjBMI, we identified 44 loci (27 previously established for main effects, 17 novel) with sex-specific effects, of which 28 showed larger effects in women than in men, five showed larger effects in men than in women, and 11 showed opposite effects between sexes. No age-dependent effects were identified for WHRadjBMI. This is the first genome-wide interaction meta-analysis to report convincing evidence of age-dependent genetic effects on BMI. In addition, we confirm the sex-specificity of genetic effects on WHRadjBMI. These results may providefurther insights into the biology that underlies weight change with age or the sexually dimorphism of body shape.</p

    Novel Approach Identifies SNPs in SLC2A10 and KCNK9 with Evidence for Parent-of-Origin Effect on Body Mass Index

    Get PDF
    Marja-Liisa Lokki työryhmien Generation Scotland Consortium, LifeLines Cohort Study ja GIANT Consortium jäsenPeer reviewe
    corecore