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Abstract 19 

Influenza A/H2N2 viruses caused a pandemic in 1957 and continued to circulate in 20 

humans until 1968. The antigenic evolution of A/H2N2 viruses over time and the 21 

amino acid substitutions responsible for this antigenic evolution are not known. Here, 22 

the antigenic diversity of a representative set of human A/H2N2 viruses isolated from 23 

1957 until 1968 was characterized. Antigenic change of influenza A/H2N2 viruses 24 

during the 12 years that this virus circulated was modest. Two amino acid 25 

substitutions, T128D and N139K, located in the head domain of the H2 26 

hemagglutinin molecule were identified as important determinants of antigenic 27 

change during A/H2N2 virus evolution. The rate of A/H2N2 virus antigenic evolution 28 

during the twelve-year period after introduction in humans was half of that of A/H3N2 29 

viruses, despite similar rates of genetic change.  30 

 31 

Importance 32 

While influenza A viruses of subtype H2N2 were at the origin of the Asian influenza 33 

pandemic, little is known about the antigenic changes that occurred during the twelve 34 

years of circulation in humans, the role of preexisting immunity and evolutionary 35 

rates of the virus. In this study, the antigenic map derived from hemagglutination 36 

inhibition titers of cell-cultured virus isolates and ferret post-infection sera displayed a 37 

directional evolution of viruses away from earlier isolates. Furthermore, individual 38 

mutations in close proximity to the receptor-binding site of the HA molecule 39 

determined the antigenic reactivity confirming that individual amino acid substitutions 40 

in A/H2N2 viruses can confer major antigenic changes. This study adds to our 41 

understanding of virus evolution with respect to antigenic variability, rates of virus 42 

evolution, and potential escape mutants of A/H2N2. 43 



 44 

Introduction  45 

Influenza A viruses of the H2N2 subtype initiated a pandemic in 1957, causing 46 

morbidity and mortality in humans, an event also known as the ‘Asian flu pandemic’ 47 

(1-3). No surveillance systems were in place in 1957 to accurately detect and record 48 

the A/H2N2 pandemic outbreak scenario. Based on death certificates and 49 

newspaper articles, excess-mortality was found to occur in waves with the highest 50 

number of events between October 1957 and March 1958 in 5-14 year-olds (4). The 51 

A/H2N2 virus originated upon reassortment between a previously circulating 52 

seasonal human A/H1N1 virus and an avian A/H2N2 virus. The latter virus 53 

contributed the hemagglutinin (HA), neuraminidase (NA), and polymerase basic 54 

protein 1 (PB1) gene segments to the pandemic A/H2N2 virus (5-7). This virus 55 

circulated in the human population until it was replaced by an A/H3N2 influenza virus 56 

in 1968. Today, more than 50 years after the last detected A/H2N2 virus infection in 57 

humans, immunity against A/H2N2 viruses is waning. The threat of reintroduction 58 

and spread of H2 viruses in humans remains, because A/H2N2 viruses and other 59 

influenza A viruses with combinations of H2 and varying NA genes continuously 60 

circulate in avian species and incidentally in swine (8-10). Several vaccine 61 

candidates have been developed for pandemic preparedness (11-13) and 62 

prophylactic vaccination of individuals at increased risk has been proposed (14). 63 

The HA glycoprotein of influenza A viruses is the major target for neutralizing 64 

antibodies and continuously undergoes antigenic evolution by acquiring substitutions 65 

to escape antibody-mediated immunity (15). Five antigenic sites in the HA molecule 66 

have been identified to determine antigenic properties of seasonal human influenza 67 

viruses (16-18). In the case of A/H2N2 influenza viruses, six antigenic sites (I-A to I-68 



D and II-A, II-B) in the HA have been recognized to play a major role in antigenic 69 

change (19). These sites structurally correspond to the five sites described for 70 

A/H3N2 influenza viruses (designated A-E). Site II-A is unique for A/H2N2 influenza 71 

viruses, highly conserved and located in the HA stem domain. 72 

After seminal studies have described the structural importance of the HA receptor-73 

binding site (RBS) for antigenic variation (17, 20, 21), recently, it was shown that a 74 

mere seven amino acid positions on HA located immediately adjacent to the receptor 75 

binding site (RBS) largely determined antigenic changes that occurred during 76 

A/H3N2 influenza virus circulation in humans from 1968 to 2003 (22). Similarly, a 77 

study on clade 2.1 A/H5N1 viruses showed that substitutions in close proximity to the 78 

RBS dictated antigenic change of avian A/H5N1 influenza viruses emerging in 79 

poultry (23), and amino acid changes close to the RBS were found to induce 80 

antigenic change in A/H1N1pdm09 viruses (24-26). Substitutions in the headdomain 81 

of the HA molecule have also been demonstrated to determine the antigenic 82 

phenotype of equine and swine influenza A viruses (27, 28). Combined, these 83 

studies demonstrate the importance of RBS-proximal substitutions for antigenic drift 84 

of influenza A viruses. 85 

In this study, the antigenic properties of a representative set of human A/H2N2 virus 86 

isolates spanning the period from 1957 to 1968 were assessed with respect to their 87 

reactivity to ferret post-infection sera in hemagglutination inhibition assays. The 88 

substitutions responsible for major antigenic differences between A/H2N2 influenza 89 

viruses were mapped by site-directed mutagenesis and generation of recombinant 90 

viruses. 91 

 92 

Materials and Methods 93 



Biosafety considerations 94 

All experiments involving A/H2N2 viruses were conducted under biosafety level 95 

(BSL) 3 conditions. Reassortant viruses in the backbone of A/Puerto Rico/8/34 96 

(H1N1) harboring the HA gene of A/H2N2 viruses were used under BSL-2 97 

conditions. 98 

 99 

Ferret antisera 100 

Ferret post-infection antisera were prepared against virus isolates A/Japan/305/1957 101 

(JP/305/57), A/Singapore/1/1957 (SP/1/57), A/Netherlands/K1/1963 (NL/K1/63), 102 

A/England/1/66 (EN/1/66), A/Tokyo/3/67 (TY/3/67), and A/Netherlands/B1/1968 103 

(NL/B1/68). To this end, male ferrets (Mustela putorios furo) were obtained from an 104 

accredited ferret breeder. All animals tested negative for antibodies against H1, H2, 105 

and H3 influenza A viruses, influenza B virus and Aleutian Disease Virus prior to the 106 

start of the experiments. Ferret antisera were prepared by intranasal inoculation of 107 

the animals with the respective virus, and antisera were collected 14 days after 108 

inoculation. Ferret housing and animal experiments were conducted in strict 109 

compliance with European guidelines (EU directive on animal testing 86/609/EEC) 110 

and Dutch legislation (Experiments on Animal Act, 1997). The experimental protocol 111 

was approved by an independent animal experimentation ethical review committee 112 

(‘Stichting Dier Experimenten Commissie Consult’). Animal welfare was monitored 113 

daily and all animal handling was performed under sedation to minimize discomfort.  114 

 115 

Viruses and cells 116 

Eighteen A/H2N2 viruses were used in this study (accession numbers for HA gene in 117 

brackets); A/Netherlands/M1/57 (KM402801), A/Netherlands/M2/57 (KM885170), 118 



A/Singapore/1/57 (CY125894), A/Netherlands/M1/58 (CY077741), 119 

A/Netherlands/N1/59 (CY077904), A/Netherlands/H1/60 (CY077786), 120 

A/Netherlands/67/63 (CY125886), A/Netherlands/K1/1963 (CY077733), 121 

A/England/12/64 (AY209967), A/Sydney/2/64 (KP412320), A/Taiwan/1/1964 122 

(DQ508881), A/Moscow/56/65 (CY031603), A/England/1/66 (KP412318), 123 

A/England/10/67 (AY209980), A/Tokyo/3/67 (AY209987), A/Netherlands/61/68 124 

(KP412319), A/Netherlands/B1/68 (KM402809), A/Netherlands/B2/68 (KM885174). 125 

Human A/H2N2 virus samples from the Netherlands were collected from individuals 126 

with influenza-like symptoms during the years 1957-1968. From these samples, virus 127 

isolates were obtained by culture in tertiary Monkey Kidney cells (tMK) and Madin-128 

Darby Canine Kidney cells (MDCK) for a maximum of five passages without prior 129 

inoculation in embryonated chicken eggs. Complete HA genes of viruses 130 

A/Netherlands/M1/1957 and A/Netherlands/B2/1968 were amplified from low-131 

passaged viruses and cloned in a modified pHW2000 expression plasmid as 132 

described previously (29). Recombinant viruses consisting of the HA gene of 133 

A/H2N2 and the 7 remaining gene segments of A/Puerto Rico/8/34 (A/H1N1) were 134 

generated by reverse genetics (30). Introduction of mutations in the HA gene was 135 

performed using the QuikChange multi-site directed mutagenesis kit (Agilent 136 

Technologies, Amstelveen, The Netherlands) according to manufacturer’s 137 

instructions. The presence or absence of mutations was confirmed by sequence 138 

analysis of the HA gene. Virus stocks were generated by inoculation of MDCK cells 139 

with 293T transfection supernatant. The inoculum was removed after 2 hours and 140 

replaced by MDCK infection medium, consisting of EMEM, 100 IU/ml penicillin, 100 141 

μg/ml streptomycin, 2 mM glutamine, 1.5 mg/ml sodium bicarbonate, 10 mM Hepes, 142 

non-essential amino acids, and 25 μg/ml TPCK-treated trypsin. Subsequently, cells 143 



were incubated at 37°C and 5% CO2 and virus-containing supernatant was 144 

harvested three days after inoculation. 145 

293T cells were cultured in Dulbecco modified Eagle’s medium (DMEM, Lonza 146 

Benelux, Breda, the Netherlands) supplemented with 10% fetal calf serum (FCS), 147 

100 IU/ml penicillin, 100 μg/ml streptomycin, 2 mM glutamine, 1 mM sodium 148 

pyruvate, and non-essential amino acids (MP Biomedicals). MDCK cells were 149 

cultured in Eagle’s minimal essential medium (EMEM, Lonza) supplemented with 150 

10% FCS, 100 IU/ml penicillin, 100 μg/ml streptomycin, 2 mM glutamine, 1.5 mg/ml 151 

sodiumbicarbonate (Lonza), 10 mM HEPES (Lonza), and non-essential amino acids 152 

(MP Biomedicals). 153 

 154 

Hemagglutination inhibition assays 155 

HI assays using a panel of post-infection ferret antisera were performed as 156 

described previously (15). Briefly, ferret antisera were treated with receptor 157 

destroying enzyme (Vibrio cholerae neuraminidase) and incubated at 37°C 158 

overnight, followed by inactivation of the enzyme at 56°C for one hour. Twofold serial 159 

dilutions of the antisera, starting at a 1:20 dilution, were mixed with 25 μl PBS 160 

containing four hemagglutinating units of virus and were incubated at 37°C for 30 161 

minutes. Subsequently, 25 μl 1% turkey erythrocytes were added and the mixture 162 

was incubated at 4°C for one hour. HI titers were read and expressed as the 163 

reciprocal value of the highest dilution of the serum that completely inhibited 164 

agglutination of virus and erythrocytes. 165 

 166 

Computational analyses 167 

Amino acid sequences of human A/H2N2 HA1 were aligned and analyzed by 168 



Maximum Likelihood phylogeny using PhyML 3.0 software (31). The sequence of 169 

avian A/H2N2 isolate A/mallard/Netherlands/31/2006 (ACR58563) was used as an 170 

outgroup. 171 

Antigenic maps were constructed as described previously (15). Antigenic 172 

cartography is a method for the quantitative analysis and visualization of HI data. In 173 

an antigenic map, the distance between antiserum point S and antigen point A 174 

corresponds to the difference between the log2 of the maximum titer observed for 175 

antiserum S against any antigen and the log2 of the titer for antiserum S against 176 

antigen A. Each titer in an HI table can be thought of as specifying a target distance 177 

for the points in an antigenic map. Modified multidimensional scaling methods are 178 

used to arrange the antigen and antiserum points in the antigenic map to best satisfy 179 

the target distances as specified by the HI data. The result is a map in which the 180 

distance between the points represents antigenic distance as measured by the HI 181 

assay in which the distances between antigens and antisera are inversely related to 182 

the log2 HI titer. Since antisera are tested against multiple antigens, and antigens 183 

tested against multiple antisera, many measurements can be used to determine the 184 

position of the antigen and antiserum in an antigenic map, thus improving the 185 

resolution of interpreting HI data. 186 

The amino acid positions responsible for major changes in HI patterns were plotted 187 

on the surface of the crystal structure of A/Singapore/1/1957 HA (PDB accession 188 

code 2WR7 (32) using MacPyMOL (The PyMOL Molecular Graphics System, 189 

Version 1.3, Schrödinger, LLC). 190 

Overall rates of evolutionary change (nucleotide substitutions per site per year) were 191 

estimated using the BEAST program version 1.8.1 (33), the uncorrelated log-normal 192 

relaxed molecular clock and the HKY85 substitution model (34). This analysis was 193 



conducted with a time-aware linear Bayesian skyride coalescent tree prior (35) over 194 

the unknown tree space, with relatively uninformative priors on all model parameters 195 

using the GTR+G+I model with no codon positions enforced. Two independent 196 

Bayesian MCMC analyses for HA1 for 50 million states, sampling every 5000 states, 197 

were performed. Convergences and effective sample sizes of the estimates were 198 

checked using Tracer version 1.5 (http://tree.bio.ed.ac.uk/software/tracer/) and the 199 

first 10 % of each chain was discarded as burn-in. Uncertainty in parameter 200 

estimates is reported as values of the 95 % highest posterior density (HPD). 201 

 202 

Results 203 

Genetic and antigenic diversity of A/H2N2 viruses 204 

The genetic variation of human A/H2N2 influenza viruses isolated between 1957 and 205 

1968 was assessed by Maximum Likelihood algorithms in an HA1 amino acid 206 

phylogenetic tree (Figure 1). The tree displays a ladder-like structure indicating 207 

gradual accumulation of mutations over time. A set of 18 human A/H2N2 influenza 208 

virus isolates representative of genetic variation over the 12-year period and that 209 

was available in our laboratory was compiled (highlighted in red color in Figure 1). 210 

HI titers of the set of 18 A/H2N2 viruses and six A/H2N2 ferret post-infection sera 211 

revealed a typical pattern of influenza virus antigenic drift, with high antibody titers of 212 

antisera against homologous and contemporary viruses and lower titers against non-213 

contemporary strains (Table 1). HI titers were processed using antigenic cartography 214 

methods to yield an antigenic map (Figure 2), revealing directional antigenic 215 

progression of later isolates away from early strains over time. Viruses isolated in the 216 

same or subsequent years generally grouped together in the map and thus were 217 

antigenically similar. Exceptions were A/Sydney/2/64 and the latest A/H2N2 viruses. 218 



In this study, the maximum antigenic distance between any pair of wildtype viruses 219 

was 6.4 antigenic units between A/Netherlands/M1/1958 (NL/M1/58) and 220 

A/Netherlands/B2/1968 (NL/B2/68). Viruses isolated in 1964 were antigenically 221 

highly diverse; whereas A/England/12/1964 (EN/12/64) and A/Taiwan1/64 (TW/1/64) 222 

drifted 3.9 units away from NL/M1/57, A/Sydney/2/1964 (SY/2/64) was only 1.6 223 

antigenic units away from NL/M1/57. The three viruses isolated shortly before the 224 

introduction of the first A/H3N2 virus in 1968 (NL/61/68, NL/B1/68, NL/B2/68) were 225 

particularly divergent in the antigenic map with 3.2 antigenic units difference between 226 

NL/61/68 and NL/B2/68. 227 

 228 

Molecular basis of antigenic change in A/H2N2 viruses 229 

The head domain of the HA molecule is the main target of neutralizing antibodies 230 

(17, 36). Previous studies indicated that amino acid substitutions near the RBS and 231 

exposed on the surface of the HA molecule were responsible for major antigenic drift 232 

of influenza A/H3N2, A/H5N1 viruses and influenza B virus (23, 25, 37). Amino acid 233 

changes on positions 100-250 were compared as a coarse outline of the globular 234 

head domain including the RBS area of the H2 HA. A set of 7 amino acid 235 

substitutions (T126E, T128D, R132K, N139K, S154P, A184T, A188T) was 236 

consistently found in later A/H2N2 virus isolates as compared to the earlier strains 237 

and hence could explain the antigenic differences between early and late strains. 238 

Throughout this study, amino acid positions are numbered as suggested by Burke 239 

and Smith (38). Single amino acid substitutions and combinations thereof were 240 

introduced and tested in recombinant viruses harboring the HA gene of NL/M1/57 or 241 

NL/B1/68 in the backbone of A/Puerto Rico/8/34 (A/H1N1). All reverse-genetics 242 



viruses were rescued, with the exception of NL/B1/68 HA K132R mutant virus 243 

despite three independent rescue attempts. 244 

A substitution at position 139 was responsible for substantial antigenic change of 2.9 245 

antigenic units (AU) when tested both in viruses containing HA genes of NL/M1/57 246 

and NL/B1/68 (Figure 3A, B, Table 2). This position is surface exposed and located 247 

on a protruding loop adjacent to the RBS (Figure 3E). All other individual mutations 248 

in NL/M1/57 and NL/B1/68 had an antigenic effect of less than 1.7 AU compared to 249 

the wildtype virus. The effect of N139K in NL/M1/57 increased with the addition of 250 

T128D to 3.6 antigenic units distance from the NL/M1/57 virus carrying the NL/M1/57 251 

wildtype HA (Figure 3C). When the combination of K139N and D128T was tested in 252 

NL/B1/68 HA, only a rather small difference in antigenic effect (1.1 AU) was 253 

measured compared to K139N alone (Figure 3D). Here, a combination of six amino 254 

acid substitutions (E126T, D128T, K139N, S154P, A184T, A188T) was necessary in 255 

order for the virus to be antigenically similar to NL/M1/57 and located 5.4 antigenic 256 

units from NL/B1/68. Each substitution in addition to K139N had a rather small but 257 

incremental effect on the antigenic reactivity of the H2N2 HA. 258 

 259 

Evolutionary rates of A/H2N2 and A/H3N2 260 

Next, the genetic and antigenic change over time after introduction of the new 261 

influenza virus subtype in the human population was investigated (Figure 4). The 262 

rate of evolution of A/H2N2 HA1 was estimated and compared to the rate of HA1 263 

evolution during the first 12 years of A/H3N2 circulation after its introduction in the 264 

human population in 1968, based on phylogenetic trees generated here and by 265 

Smith et al. (15). The average rate of genetic evolution (nucleotide substitutions per 266 

site per year) as estimated in this analysis was 8.47×10-3 for H2N2 and 7.53×10-3 for 267 



H3N2 (Figure 4A). The average rate of antigenic evolution for A/H2N2 from 1957-268 

1968 was 0.4 AUs per year as calculated from the slope of the best-fit regression 269 

line of the distances in the antigenic map (Figure 4B). Using the A/H3N2 dataset 270 

reported by Smith et al. (15) the maximum distance in the antigenic map during the 271 

first 12 years of circulation (1968 - 1979) was 13.3 AUs between isolates 272 

A/Bilthoven/16190/1968 and A/Bangkok/1/1979, resulting in an average evolutionary 273 

rate of 0.9 AUs per year, somewhat lower than the rate reported over the 35-year 274 

period 1968 – 2003 of 1.2 AUs per year (15). Thus, the antigenic evolution of 275 

A/H2N2 virus was approximately two times slower than antigenic evolution of 276 

A/H3N2 during the first 12 years of circulation and three times slower than over the 277 

35-year period. 278 

To investigate if these differences in antigenic evolution were potentially due to 279 

increased evolutionary pressures to select antigenic escape mutants or as the 280 

consequence of an overall increased rate of nucleotide substitution in HA1, the 281 

nucleotide substitution rates were estimated using BEAST version 1.8.1 with a 282 

relaxed log-normal clock and the Bayesian skyride time-aware model. All available 283 

sequences in public databases were downloaded, which resulted in alignments of 98 284 

sequences for A/H2N2 virus HA1 and 103 sequences for H3N2 virus HA1 after 285 

curation. The mean rate of nucleotide substitution for A/H2N2 HA1 was determined 286 

to be 4.88×10-3 (highest posterior density or HPD 3.68×10-3 - 6.21×10-3) nucleotide 287 

substitutions per site per year. The nucleotide substitution rate of A/H3N2 virus HA1 288 

was determined to be 4.48×10−3 (HPD 3.57×10-3 - 5.49×10-3), comparable to 289 

previous results obtained for A/H3N2 HA1 at 5.15×10-3 (HPD 4.62×10-3 - 5.70×10-3) 290 

(36). This rate of A/H3N2 virus evolution was not statistically significantly different 291 

from the A/H2N2 virus rate (Bayes factors: H2>H3: 1.533, H3>H2: 0.651). 292 



 293 

Discussion 294 

Using a unique and comprehensive collection of human A/H2N2 viruses with low 295 

passage history and matching ferret post-infection sera spanning the time of 296 

circulation of A/H2N2 viruses in humans, the antigenic evolution of A/H2N2 viruses 297 

over time was analyzed. Phylogenetic analysis of HA sequences of human A/H2N2 298 

viruses resulted in the ladder-like structure of the phylogenetic tree (Figure 1) due to 299 

the gradual accumulation of mutations characteristic for human influenza A viruses 300 

(39, 40). All H2N2 virus isolates available at our institute were amplified by PCR and 301 

sequenced. They were confirmed to be representative of the major genetic diversity 302 

and were tested in HI assays for their reactivity to corresponding ferret antisera and 303 

to construct antigenic maps. The antigenic evolution of A/H2N2 viruses did not 304 

demonstrate obvious clustering of virus isolates in contrast to A/H3N2 viruses (22), 305 

but a rather gradual pattern of antigenic change over time. However, the number of 306 

strains included in the current analysis and the short time span of A/H2N2 virus 307 

circulation may simply be insufficient for clustering to be obvious. 308 

A single amino acid change from asparagine (N) to lysine (K) at position 139 in the 309 

HA molecule played a prominent role in determining the antigenic properties of 310 

A/H2N2 viruses. When introduced in either NL/M1/57 or NL/B1/68, this substitution 311 

had an antigenic effect of 2.9 antigenic units, describing roughly half of the observed 312 

antigenic diversity of A/H2N2 HA. No other single amino acid substitution was 313 

responsible for a greater antigenic effect than D128T in the context of NL/B1/68 314 

(Figure 3C and D). Both positions 128 and 139 are located close to the RBS in the 315 

HA protein, similar to the substitutions that were previously shown to be important for 316 

major antigenic change of other influenza A viruses and influenza B virus (22, 23, 317 



25). Additional individual substitutions at positions 126, 132, 154, 184 and 188, had 318 

only minor antigenic effect, but collectively with positions 139 and 128 explained the 319 

major antigenic changes observed in A/H2N2 viruses. Also, these changes were 320 

located in close proximity to the RBS (Figure 3). For the antigenic evolution of 321 

A/H3N2 virus, major antigenic change was caused by substitutions at only seven 322 

positions around the RBS, with relatively small effects of additional substitutions. For 323 

A/H2N2 virus, a single amino acid substitution also determined the antigenic 324 

phenotype of subsequent major drift variants, but the effect of additional substitutions 325 

was more substantial, potentially due to the different time scales at which the 326 

antigenic evolution was measured and the lack of clustering of strains in the A/H2N2 327 

map. 328 

Whereas A/H1N1pdm09 viruses remained remarkably antigenically stable since their 329 

introduction in humans (41, 42), A/H3N2 viruses displayed a more rapid 330 

accumulation of substitutions with major impact on antigenic evolution over time, 331 

possibly implying differential abilities of various HA subtypes to accommodate 332 

substitutions that affect antigenic properties (25, 43). The antigenic evolution of 333 

influenza B virus was also found to be relatively slow compared to A/H3N2 virus (22, 334 

37). Here, the antigenic evolution of A/H2N2 was found to be two times slower than 335 

the antigenic evolution of A/H3N2 virus during its first twelve years of circulation, and 336 

three times slower than during the period of A/H3N2 virus circulation from 1968 to 337 

2003, while their respective nucleotide substitution rates differed only slightly in the 338 

first 12 years of virus circulation in humans. Although the exact factors contributing to 339 

this difference in rates of antigenic evolution are not known, antibody mediated 340 

selection of escape mutants likely played an important role. Human sera obtained 341 

before 1957 from the elderly contained antibodies reacting to A/H2N2 virus, 342 



suggesting that the pandemic of 1889-1890 was also caused by an influenza A virus 343 

of the H2 subtype (44). However, this pre-existing immunity in the population 344 

apparently did not result in increased antibody mediated selection for A/H2N2 virus 345 

variants, similar to the lack of rapid natural selection of escape mutants for 346 

A/H1N1pdm09 virus. 347 

Combined, the genetic variability of A/H2N2 was comparable to other influenza A 348 

subtypes whereas the antigenic evolution was relatively slow, indicating that 349 

population immunity to A/H2N2 did not facilitate rapid antigenic evolution at the time 350 

of virus introduction. The genetic data indicate that the size of the susceptible 351 

population as well as virus turnover was likely similar to other influenza virus 352 

subtypes. We hypothesize that a combination of factors including the intrinsic 353 

capacity of the influenza virus HA to accumulate mutations responsible for antigenic 354 

evolution, preexisting immunity at the time of introduction, susceptible population 355 

size and prior circulation of a certain subtype leading to human adaptation have a 356 

combined effect on the HA to evolve antigenically. 357 

This study describes directional antigenic evolution of A/H2N2 viruses during 358 

circulation in humans and highlights the importance of amino acid sites in close 359 

proximity to the RBS for antigenic reactivity of A/H2N2 HA. Rates of antigenic 360 

evolution in A/H2N2 viruses were lower compared to A/H3N2 virus, possibly implying 361 

differences in the structural freedom of the HA molecules to evolve.  362 
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 370 

Figure 1: 371 

Maximum Likelihood phylogenetic tree based on HA1 amino acid sequences of 372 

human A/H2N2 viruses. Virus isolates used for antigenic characterization are 373 

highlighted in red.  374 



 375 

Figure 2: 376 

Antigenic map of human A/H2N2 influenza viruses as measured in HI assays 377 

with ferret postinfection antisera. Circles indicate the position of viruses, squares 378 

represent two ferret antisera each raised against A/Japan/305/57, A/Singapore/1/57, 379 

A/Netherlands/K1/63, A/England/1/66, A/Tokyo/3/67, A/Netherlands/B1/68. The 380 

underlying grid depicts the scale of antigenic difference between the viruses, with 381 

each square representing one antigenic unit or a 2-fold difference in HI titer. Years of 382 

isolation of the A/H2N2 virus isolates are indicated, ranging from red (1957) to blue 383 

(1968).  384 
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 385 

Figure 3: 386 

Summary of substitutions responsible for antigenic differences between 387 

NL/M1/57 and NL/B1/68 388 

Antigenic maps showing the antigenic change caused by individual amino acid 389 

substitutions introduced into NL/M1/57 (A) or NL/B1/68 (B) and combinations of 390 

mutations introduced into NL/M1/57 (C) or NL/B1/68 (D). Viruses are shown as 391 

circles of different color, with a diamond indicating the mutant virus with the largest 392 

antigenic distance to the corresponding wildtype strain. Sera are indicated as open 393 

squares. The underlying map of wildtype viruses from Figure 2 is shown in grey and 394 

its positioning is kept constant. The arrows indicate the antigenic distance of a 395 

double mutant that spans a long distance between the earliest and latest isolates of 396 

A/H2N2. Structure of an HA trimer (E) with individual monomers in shades of grey, 397 

the RBS in yellow and mutations near the RBS with a measurable effect on 398 



antigenicity in orange (E). The two mutations with the biggest combined effect in (C) 399 

were colored in red (T128D, N139K).  400 



 401 

Figure 4: 402 

Rates of genetic and antigenic evolution of A/H2N2 and A/H3N2 virus during 12 403 

years of circulation in humans. Genetic (A) and antigenic (B) distances of the 404 

A/H2N2 (red squares) and A/H3N2 (blue circles) viruses from the first human virus 405 

isolates in 1957 (A/Netherlands/M1/1957) and 1968 (A/Bilthoven/16190/1968). Rates 406 

are derived from the slope of the best-fit regression line.  407 
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  JP/305/57 SP/1/57 NL/K1/63 EN/1/66 TY/3/67 NL/B1/68 

A/NETHERLANDS/M1/57 [NL/M1/57] 2560 1600 1280 320 40 160 

A/NETHERLANDS/M2/57 [NL/M2/57] 960 1600 960 240 40 80 

A/SINGAPORE/1/57 [SP/1/57] 1600 1920 1280 160 35 60 

A/NETHERLANDS/M1/58 [NL/M1/58] 960 960 960 160 30 60 

A/NETHERLANDS/N1/59 [NL/N1/59] 1920 1920 1920 800 240 240 

A/NETHERLANDS/H1/60 [NL/H1/60] 1920 1600 2560 480 120 200 

A/NETHERLANDS/67/63 [NL/67/63] 560 1280 4480 560 240 800 

A/NETHERLANDS/K1/63 [NL/K1/63] 1600 1120 5760 960 200 800

A/ENGLAND/12/64 [EN/12/64] 60 240 2240 2880 320 1120 

A/SYDNEY/2/64 [SY/2/64] 480 800 480 200 60 160 

A/TAIWAN/1/64 [TA/1/64] 80 320 1120 1920 320 1120 

A/MOSCOW/56/65 [MW/56/65] 560 240 2560 480 240 1280 

A/ENGLAND/1/66 [EN/1/66] 640 320 3840 6400 320 2240 

A/ENGLAND/10/67 [EN/10/67] 1120 320 2560 800 240 1120 

A/TOKYO/3/67 [TY/3/63] 80 80 160 320 960 320 

A/NETHERLANDS/61/68 [NL/61/68] 320 160 1120 2240 160 800 

A/NETHERLANDS/B1/68 [NL/B1/68] 20 80 960 960 320 2880

A/NETHERLANDS/B2/68 [NL/B2/68] 50 60 320 640 640 640 

 408 

Table 1: Hemagglutination inhibition titers for wildtype viruses towards 409 

A/H2N2 postinfection ferret antisera  410 

One serum per isolate was selected to represent the two individual ferret sera since 411 

variation in HI titers between repeat sera was negligible. Viruses emphasized in 412 

Figure 3 are in bold and homologous HI titers are underlined.  413 



 JP/305/57 SP/1/57 NL/K1/63 EN/1/66 TY/3/67 NL/B1/68 

NL/M1/57_T126E 1600 1440 640 320 80 560 

NL/M1/57_T128D 1600 960 640 280 80 640

NL/M1/57_R132K 2240 1280 640 800 80 320 

NL/M1/57_N139K 160 1120 640 1920 80 640 

NL/M1/57_S154P 1920 1280 1280 560 360 280 

NL/M1/57_T184A 1600 1920 1120 320 20 160 

NL/M1/57_T188A 1280 1600 1920 480 20 160 

NL/B1/68_E126T 40 80 640 960 160 1280 

NL/B1/68_D128T 1120 240 1440 2240 160 2240 

NL/B1/68_K139N 400 160 640 320 320 2240 

NL/B1/68_P154S 20 160 640 800 320 3200

NL/B1/68_A184T 40 120 480 640 160 2560 

NL/B1/68_A188T 20 100 160 320 240 1920 

NL/M1/57_T126EN139K 560 640 640 1920 160 1920 

NL/M1/57_T128DN139K 80 640 640 1120 160 2240 

NL/M1/57_T126ET128DN139K 100 640 320 800 140 2880 

NL/M1/57_T126ET128DR132KN139K 160 560 280 800 160 1920 

NL/M1/57_T126ET128DN139KS154PT184AT188A 80 320 960 800 160 3200 
NL/M1/57_T126ET128DR132KN139KS154PT184A
T188A 80 320 640 800 160 2560 

NL/B1/68_E126TK139N 160 320 480 320 160 640 

NL/B1/68_D128TK139N 320 480 1280 320 160 640 

NL/B1/68_E126TD128T 80 80 960 640 80 640

NL/B1/68_E126TD128TK139N 960 480 2240 640 160 640 

NL/B1/68_E126TD128TK139NK132R 640 400 2240 320 60 320 

NL/B1/68_E126TD128TK139NP154SA184TA188T 960 560 480 280 160 100
NL/B1/68_E126TD128TR132KK139NP154SA184T
A188T 640 480 640 60 50 40 

 414 

Table 2: Hemagglutination inhibition titers for mutant viruses towards A/H2N2 415 

postinfection ferret antisera   416 
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