
Novel Approach Identifies SNPs in SLC2A10 and KCNK9
with Evidence for Parent-of-Origin Effect on Body Mass
Index
Clive J. Hoggart1, Giulia Venturini2, Massimo Mangino3, Felicia Gomez4, Giulia Ascari2, Jing Hua Zhao5,

Alexander Teumer6, Thomas W. Winkler7, Natalia Tšernikova8,9, Jian’an Luan5, Evelin Mihailov8,10,
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Abstract

The phenotypic effect of some single nucleotide polymorphisms (SNPs) depends on their parental origin. We present a
novel approach to detect parent-of-origin effects (POEs) in genome-wide genotype data of unrelated individuals. The
method exploits increased phenotypic variance in the heterozygous genotype group relative to the homozygous groups.
We applied the method to .56,000 unrelated individuals to search for POEs influencing body mass index (BMI). Six lead
SNPs were carried forward for replication in five family-based studies (of ,4,000 trios). Two SNPs replicated: the paternal
rs2471083-C allele (located near the imprinted KCNK9 gene) and the paternal rs3091869-T allele (located near the SLC2A10
gene) increased BMI equally (beta = 0.11 (SD), P,0.0027) compared to the respective maternal alleles. Real-time PCR
experiments of lymphoblastoid cell lines from the CEPH families showed that expression of both genes was dependent on
parental origin of the SNPs alleles (P,0.01). Our scheme opens new opportunities to exploit GWAS data of unrelated
individuals to identify POEs and demonstrates that they play an important role in adult obesity.
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Introduction

The effect of genetic variants on phenotypes may depend upon

the parent from whom the variant was inherited [1,2]. Parent-of-

origin effects (POEs) may arise through imprinting; mechanisms of

which include cytosine methylation and histone deacetylation [2].

To date around 50 human genes are known to be imprinted and

for most mammalian species less than 1% of the genome is

confirmed to be imprinted [3]. One plausible explanation for this

phenomenon is the parental conflict hypothesis, whereby both

parents would like to maximize the influence of their genome on

their offspring [4]. Current methods for detecting parent-of-origin

effects rely on assigning parental ancestry to the inherited alleles.

This is straightforward in linkage studies, which have identified

potential POEs on type 2 diabetes, body mass index (BMI) [5,6],

and alcohol intake [7–9]. However, only a very few of these findings

have been replicated and the identified linkage peaks often span

large chromosomal regions harbouring hundreds of genes, hence

the causal gene or regulatory sequence is unknown. A notable

exception is the work of Kong et al [1] who inferred parental origin

through genealogy information and long-range phasing to subse-

quently test for POEs. This study identified six SNPs, four

associated with risk of type 2 diabetes and the other two associated

with each of breast cancer and basal-cell carcinoma.

Genome-wide association studies (GWASs) of unrelated indi-

viduals have very precisely identified a large number of genetic loci

harbouring SNPs whose (alternative) allele counts associate with

common traits. Since GWASs predominantly include unrelated

individuals, the parental origin of the alleles cannot be determined,

hence genetic effects influenced by the parental origin of the alleles

are typically not considered. Here we present a novel approach

that is able to detect POEs using genome-wide genotype data of

unrelated individuals. We chose BMI as our target trait, due to

previous findings [5,6] and the large available sample size. We

report the discovery of two novel loci affecting BMI in a manner

dependent on the parent-of-origin of the transmitted alleles.

Results

We applied our POE test, which compares the phenotypic

variance of the heterozygous genotype group to the variance

observed in the homozygous groups, to all SNPs genome-wide.

The test, which is applicable to unrelated individuals, assumes that an

increased variance in the heterozygous group arises because the

heterozygous group consists of two subgroups (paternal reference

allele/maternal alternative allele and maternal reference allele/

paternal alternative allele) each with different means (see Figure 1).

Differences in phenotypic variance were tested using the Brown-

Forsythe test, modified to test the mean absolute deviations from the

median in the heterozygous and homozygous groups (see Materials

and Methods for details). We applied this test to BMI values

(corrected for age and age-squared), separately in men and women, in

15 studies, totalling up to 56,092 individuals (detailed description of

the cohorts can be found in Tables S1–S3), 13 of which participated

in previous meta-analyses of the GIANT consortium [10]. In total

2,673,768 HapMap imputed and genotyped SNPs were tested. For

each locus, a lead SNP (with the strongest POE association) was

identified; other markers within 1 Mb or in LD (r2.0.1) were

excluded from further investigations. Sex-specific association sum-

mary statistics were then meta-analysed. No sex specific difference in

effects were observed, therefore all reported results are sex-combined.

Our criteria to select SNPs to take forward to the replication stage

resulted in the selection of six independent SNPs: four lead SNPs

with POE P-value ,561026 and three SNPs in imprinted regions

with P,561024 (see Fig S1 for QQ-plot), one SNP fulfilled both

criteria. See Table 1 for details of these results and Materials and

Methods for details of the applied selection methods. These six

SNPs were carried forward to the replication stage.

Replication in family-based studies
The replication stage utilised five family-based studies (see Tables

S1–S3) to test for parent-of-origin effects at the six selected SNPs.

Only heterozygous individuals are informative when testing for

parent-of-origin effects; the number of heterozygous individuals for

each of the tested SNPs ranged from 1,122 to 4,128 (see Table 2 and

Table S4). A simplified parental asymmetry test (PAT, see Materials

and Methods) was applied and SNPs successfully replicated if their

PAT P-values were below 0.0083 (Bonferroni corrected significance

threshold for family-wise error of 0.05 with six tests). Two of these

SNPs, rs2471083 [T/C] (GWAS discovery BMI variance (het vs.

hom): 1.058 vs 0.963, PPOE = 9.3461027; replication PAT

P = 0.00264) and rs3091869 [T/C] (GWAS discovery BMI variance

(het vs. hom): 1.046 vs 0.957, PPOE = 4.761026; replication PAT

P = 0.00245) successfully replicated. In particular, we found that

heterozygous individuals who carry the rs2471083-C allele pater-

nally have 0.11 (SD unit) higher BMI on average than those carrying

the C-allele maternally (P = 0.00264). Heterozygous carriers of the

paternal rs3091869-C allele have 0.11 (SD unit) lower BMI on

average than those carrying the maternal C-allele (P = 0.00245).

Figure 2 shows the locuszoom plots of the POE association P-values

for the two replicated loci (KCNK9 and SLC2A10).

Impact of the discovered variants
By combining the effect difference estimates (bM{bP) from the

family-based studies and the marginal association effect sizes
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((bMzbP)=2) from the largest-to-date meta-analytic study on

BMI [10], we estimated the effects of the maternal and paternal

alleles. For both rs2471083-C and rs3091869-T we obtained

bM~{0:055 and bP~0:055. Using these effect sizes and the

population frequency of these SNPs, we calculated the explained

variance of these SNPs (if their parent of origin is known) to be

0.24% and 0.30% for rs2471083 and rs3091869, respectively.

These effects are comparable to that of the strongest BMI-

associated variant in the FTO gene (0.34%) [10].

Notably, rs2471083 is located 105 kb upstream of the imprinted

gene KCNK9. Mutations in this potassium channel gene cause

Birk-Barel syndrome, a maternally transmitted syndrome of

mental retardation, hypotonia, and unique dysmorphism, resulting

from genomic-imprinting [11]. SNPs within 2 kb have been shown

to be associated with HDL cholesterol, adiponectin levels [12] and

blood pressure [13]. Its impact on hypertension is potentially via a

mechanism involving aldosterone, the concentration of which

correlates strongly with fat mass. Interestingly, KCNK9 knock-out

mice exhibited more fragmented sleep episodes [14] and 7.1%–

9.6% increased weight gain (P = 0.02) at 19–20 weeks of age [15].

SNP rs3091869 is 61 kb upstream of SLC2A10, a glucose

transporter involved in arterial morphogenesis. SNPs in low LD

(in CEU r2 = 0.05) with rs3091869 have been shown to alter body

fat distribution [16].

We tested these two confirmed SNPs in 705 trios with paediatric

(extreme) obese offspring in which parental origin of the alleles was

known in up to 255 individuals [17]. No significant effect was

observed (see Table S5). This could be due to insufficient power,

different genetic mechanisms between young individuals and

adults or that our association is specific to variations within the

range of normal BMI.

Expression experiments
We evaluated whether the parent of origin effect of the

rs2471083-T and rs3092611-T (proxy for rs3091869-T,

r2 = 0.998) alleles can be observed in the expression levels of their

respective genes (KCNK9 or SLC2A10). To test this we carried

out quantitative PCR (qPCR) experiments using lymphoblastoid

cell lines (LCL) of the CEPH families. These cell lines have been

used extensively to identify imprinted genes [18,19]. Using the

available trio data we could infer the parental origin of the alleles

of rs2471083 and rs3092611 in 33 (9 maternal T alleles, 24

paternal T alleles) and 24 (16 maternal T alleles, 8 paternal T

alleles) individuals respectively (Table S7). We performed between

2 and 10 technical replicates per individual (mean of 7.75) and

samples with high coefficient of variation (.5%) were discarded in

order to ensure robustness. After quality control, 124 expression

values from 23 (mat:pat = 4:19) samples for KCNK9 and 240

expression values from 24 (mat:pat = 16:8) for SLC2A10 were

available for analysis. We fitted a linear mixed model to test for

association between expression levels (Ct values) and allelic origin.

The paternal T allele of rs2471083 was associated with lower

KCNK9 expression levels (+1.08 [SD unit] Ct values, P = 0.0096),

and the paternal T allele of rs3092611 was associated with higher

SLC2A10 expression values (21.09 [SD unit] Ct values,

P = 0.0023). To ensure there was no systematic bias in our

experiments giving rise to spurious POE associations we repeated

the qPCR experiments for two housekeeping genes GAPDH and

HRPT1. Both analyses gave non-significant POE P-values (P.

0.3).

Methylation lookups
POEs can be driven by differences between inherited paternal

and maternal methylation. To explore whether the observed

parent-of-origin effects at our discovered SNPs were driven by

differential methylation we tested whether methylation in the

regions (Chr8: 140.45–140.65 Mb and Chr20: 45.3–45.55 Mb)

was (i) associated with the two respective SNPs (rs2471083,

rs3091869) in 262 unrelated individuals from the TwinsUK cohort

and (ii) associated with BMI in two independent cohorts: 79 BMI

discordant (difference .0.5 SD) monozygotic twin pairs from the

TwinsUK cohort and a sample of 412 unrelated individuals from

the EPIC-Italy cohort. None of these analyses showed significant

association (see Supplemental Data S1, Figures S2, S3 and Table

S8 for further details).

Discussion

Our novel approach revealed two SNPs, located near the genes

KCNK9 and SLC2A10, influencing BMI in a parent-of-origin

specific fashion. These loci were the first and fourth most

significant genome-wide in our new POE test for unrelated

individuals and both showed significant parent-of-origin effects in

family studies. Both SNPs exhibit polar overdominance, where

homozygous individuals have equal (baseline) phenotypes and

heterozygous genotypes confer relative risk/protection, depending

on the parental origin. Polar overdominance, has been observed in

humans for type2 diabetes [1] and BMI [20], however it is very

rare and its molecular mechanism is unknown.

RT-PCR experiments revealed that gene expression levels of

KCNK9 and SLC2A10 in LCLs were also influenced in a parent-

of-origin manner. The expression of these genes is highest in the

brain (although it is also expressed in testis, liver, colon, adrenal

gland and kidney; see http://www.genecards.org/) indicating a

potential neuronal involvement. Expression levels of KCNK9 and

SLC2A10 in living brain cells might have been more informative

and robust, however, such information is not available. The

applied qPCR method was optimised to ensure that the expression

levels measured in LCLs were representative only of the target

transcript and amplification efficiency was assessed to be sensitive

enough to allow the detection of even small changes in gene

expression. Interestingly, rs2471083 alleles, regardless of their

Author Summary

Large genetic association studies have revealed many
genetic factors influencing common traits, such as body
mass index (BMI). These studies assume that the effect of
genetic variants is the same regardless of whether they are
inherited from the mother or the father. In our study, we
have developed a new approach that allows us to
investigate variants whose impact depends on their
parental origin (parent-of-origin effects), in unrelated
samples when the parental origin cannot be inferred. This
is feasible because at genetic markers at which such
effects occur there is increased variability of the trait
among individuals who inherited different genetic codes
from their mother and their father compared to individuals
who inherited the same genetic code from both parents.
We applied this methodology to discover genetic markers
with parent-of-origin effects (POEs) on BMI. This resulted in
six candidate markers showing strong POE association. We
then attempted to replicate the POE effects of these
markers in family studies (where one can infer the parental
origin of the inherited variants). Two of our candidates
showed significant association in the family studies, the
paternal and maternal effects of these markers were in the
opposite direction.
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parental origin, show marginally significant association (P = 0.03)

with KCNK9 expression levels in the hippocampus (http://www.

broadinstitute.org/gtex/). Our methylation analyses did not reveal

any evidence that the POEs were driven by differences in inherited

paternal and maternal methylation. Neither of our two SNPs tag

common copy number variants (CNVs) (based on the CNV

reference data used in Heid et al. [21]) and we found only one

sample (out of 14,315 available in-house, whose BMI Z-score was

+1.18) with a 76 kb deletion overlapping rs2471083. Hence, the

effect of the two discovered SNPs are unlikely to be driven by

CNVs. To check whether the two confirmed SNPs (rs3091869,

rs2471083), or SNPs in LD (10 with r2.0.8 in 1000 Genomes

EUR population), show regulatory activity, we queried Regulo-

meDB (http://regulome.stanford.edu). None of these SNPs were

annotated to have more than minimal binding evidence

(RegulomeDB score below 4).

A previous study proposed to detect POE in inbred F2 mice by a

two-component mixture distribution fitting of the heterozygous

genotype group and further two components for the homozygous

groups [22]. This method requires a parametric distribution of the

phenotype to be assumed, small violations of this assumption can

result in heavily biased parameter estimates. The method we chose

is more robust to a wide range of phenotype distributions (due to

the underlying Brown-Forsythe test employed), computationally

faster (making it attractive for testing millions of SNPs) and

applicable to probabilistic genotype calls. Our POE test for

unrelated GWAS samples is similar to a test proposed to detect

gene-environment interactions [23] in that it exploits differences in

phenotypic variance to detect a phenomenon not directly

measured. Inflated phenotypic variance in the heterozygous group

might also be the result of other phenomenon: (i) a phenotype

altering effect (be it genetic or environmental) acting only on the

Figure 1. Explanation of the POE test. Top panel illustrates the phenotype distributions in the four genotype groups that would be observed if
the parent-of-origin of the alleles were known. Bottom panel shows how these distributions change if the parent-of-origin is unobserved. The
resulting heterozygous group will have increased variance due to its heterogeneity. This example describes a scenario we observe for the two
replicated hits, namely that the paternal- and maternal effects are of the same size, but opposite in direction (bM~{bP). Therefore the average
phenotype in the B/B group is the same as in the A/A group, as the paternal and maternal B allele effects cancel each other out. In the A/B group
there are two subpopulations: the A-pat/B-mat group with phenotypic mean of bM and the A-mat/B-pat group with bP mean. Thus, the two
subpopulations combined also have zero mean, but increased variance.
doi:10.1371/journal.pgen.1004508.g001
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heterozygous group; (ii) an overdominant effect combined with a

genetic or environmental interaction or non-linear, monotonic

phenotype transformation that has different derivatives for low

and high trait values; (iii) a large marginal additive effect combined

with a (monotonic) transformation for which the second derivative

is maximised at the mean phenotype value of the heterozygous

group (see Materials and Methods for details). More generally, the

combination of the scale on which the phenotype is measured and

a strong marginal association with an allelic dosage may give rise

to spurious associations using variance tests [24]. Recently some

evidence has emerged about loci which effect the variance of

phenotypes (through impacting environmental plasticity, canali-

zation, developmental stability, etc.) that can be detected via

association with phenotypic variability [25]. Therefore, the top hits

obtained by our POE test may need further prioritisation before

proceeding to trio-based confirmation. We recommend the

following checks: (a) Exclude SNPs with overdominant effects;

(b) For SNPs with low POE P-value, test gene-environment (GxE)

interaction (as done in [23]) via modelling phenotypic variance as

a function of the genotype dosage (coded in additive, recessive or

dominant fashion). If this test is more significant than the POE

test, it is probably a GxE that is driving the POE association and

also as a side effect we will observe significant difference in the

variance between the two homozygous groups. (c) If a SNP with

low POE P-value has marginal effect on the trait, repeat the POE

test for various transformed versions of the phenotype such as log

and inverse-normal quantile. If the resulting POE P-values are not

robust, give lower priority to the examined SNP.

For our confirmed SNPs multiple lines of evidence show that

the parent-of-origin effects are real, most convincingly clear

replication in independent family data of parent-of-origin associ-

ations of the hit SNPs with both BMI and gene expression levels.

Further, the GWAS discovery associations are very unlikely to be

artefacts of the factors discussed above: (i) there is no evidence of

overdominant, additive, recessive or dominant effects (the mean

BMI values are near identical in the three genotype groups), hence

the signals cannot be driven by gene-environment interactions or

be an artefact of the scale on which the phenotype is measured (ii)

no SNP within 500 kb has any detectable marginal effect on BMI

thus the association cannot be driven by haplotype-specific

marginal effects [26]; (iii) the phenotypic variances in the two

homozygous groups, are almost identical (rs2471083: s2
CC~0:96,

s2
CT~1:06, s2

TT~0:98 and rs3091869: s2
CC~0:97, s2

CT~1:05,

s2
TT~0:95); (iv) POE test with log- and inverse-normal quantile

transformed BMI values resulted in similar results (Table S6),

further reducing the likelihood of an artefact resulting from the

scale on which the phenotype is measured [24].

Some of the negative results of the other SNPs carried forward

to the replication phase in the family data could be explained by

lack of power. The power to replicate POE associations in family-

based studies is dependent on the available number of heterozy-

gous individuals (for details see Supplemental Data S1) and thus

increases with minor allele frequency (MAF). Therefore, it is

unsurprising that the two SNPs which replicated had relatively

high MAF (.27%).

Linkage studies have identified four regions exerting POE on

BMI (10p12, 12q24, 13q32) [5] and 2q31 [27]). We looked up

SNPs in these regions in our genome-wide discovery POE

association results. The reported linkage regions showed enrich-

ment for lower than expected POE P-values (see Figure S4 for

regional QQ-plots), however, no SNPs survived Bonferroni

correction. We also tried to replicate a SNP in exon 5 of DLK1
(rs1802710) because this SNP showed polar overdominance for

obesity in children [20], but only a very slight trend (P = 0.32) was

visible in our study. Previously reported BMI-associated loci [10]

show some enrichment for lower POE P-values (Supplemental

Data S1, Tables S9, S10 and Figure S5), however these need to be

replicated in family studies.

Previous work comparing strength of associations of mother-

offspring BMI with father-offspring BMI did not reveal intrauter-

ine influence on obesity in children [28]. A similar conclusion was

reached in a systematic review of seven studies [29], while stronger

maternal influence was observed in a recent longitudinal study

[30]. The difference in conclusions may be due to that fact that the

former studies included predominantly older children than the

longitudinal study (0–3.5 years). At early age the diet of the

offspring may be more similar to that of the mother than the father

(e.g. due to breastfeeding), which might have contributed to the

higher mother-offspring BMI similarity found by Linabery et al.
[30].

In summary, our findings indicate that POEs may play a role in

adult obesity. The two identified SNPs have strong parent-of-

origin effect on BMI, close to that of the FTO, contributing

substantially to the heritability of BMI. Our follow-up experiments

demonstrated parent-of-origin specific gene expression modula-

tion, but failed to link methylation activity of these loci to BMI

values. Inevitably for newly discovered loci, further studies are

warranted to determine how these variations functionally influence

obesity in humans. The reliance of our approach on difference in

phenotypic variance means that it cannot be extended to binary

Figure 2. Local association plots. Panels show the local POE association P-values for the KCNK9 (left panel) and SLC2A10 (right panel) loci.
doi:10.1371/journal.pgen.1004508.g002
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outcomes. Since there are other phenomena which can give rise to

significant POE association, we recommend that top hits from our

method are followed up in family studies, where parental origin of

alleles can be inferred. In addition, our variance based POE test

for GWAS data is naturally much less powerful than actually

testing the mean values of the two heterozygous subgroups in trios.

However, GWASs of unrelated individuals are several-fold more

numerous and typically much larger than studies with a trio

design, hence our methodology provides a great advance in

parent-of-origin research by providing means to exploit all

available GWAS data of unrelated individuals in order to identify

parent-of-origin effects on continuous phenotypes.

Materials and Methods

Ethics statement
All participating studies were approved by the respective

institutional Ethics Committees. All study participants gave written

consent including for genetic studies.

Detecting parent of origin effects
If we denote the alleles of a bi-allelic SNP by ‘‘A’’ (reference)

and ‘‘B’’ (alternative) the possible genotypes are A/A, A/B and B/

B. Standard GWASs estimate the effect of the alternative allele

dosage on the phenotype in question. In this work we are

interested in associations in which a phenotype (y) is influenced by

the alleles of a particular SNP and the effect depends on the

parental origin of these alleles. In the presence of a parent-of-

origin effect the heterozygous genotype group is split into two

subgroups, depending on the parental origin of the A and B alleles.

We assume that the phenotype of any individual in the A/A

genotype group is modelled by yAA~mAAze, where mAAis the

mean and eis an individual level error with mean zero and

variance s2. If the maternal and paternal effects of the B allele are

bMandbP, it follows that the phenotype of an individual in the B/

B group is yBB~(mAAzbMzbP)ze and its variance is s2. (Note

that as a consequence the maternal and paternal effects of the A

allele are {bP and {bM .) Here we assume s2is constant across

genotype groups (A/A, A/B and B/B) and bM andbP are fixed

effects. The effects of violations of these assumptions are covered in

the discussion. The phenotype in the heterozygous group is a

50%–50% mixture of two distributions (Fig 1a):

yAB~mAAzpbMz(1{p)bPze,

where p is a Bernoulli random variable (with parameter K), taking

values p~1 if the B allele is inherited from the mother and p~0 if

inherited from the father. The heterozygous phenotype distribu-

tion can be simplified to yAB~(mAAzbP)zp(bM{bP)ze Since

p and e are independent random variables, the phenotypic

variance of the heterozygous genotype group s2
AB is

Var(yAB)~Var(p)(bM{bP)2zVar(e)~
1

4
(bM{bP)2zs2

If a parent-of-origin effect is present bM andbPare different,

thus s2
AB is larger than the variance observed in the

homozygous groups (s2) (Figure 1). Therefore, although in

regular GWAS data we cannot identify the two subgroups

within A/B genotypes, we can detect POE via increased

phenotypic variance in the heterozygous group relative to the

homozygous groups.

In the presence of a marginal association a phenotype

transformation could alter the genotype group variances and

introduce bias into the test [24]. For this reason we analysed

untransformed age-, age2-corrected BMI values (normalised to

have zero mean and unit variance) separately for men and women.

Standard variance tests (such as the F-test) are, however, sensitive

to deviations from the Gaussian distribution.

Therefore, we used a robust version of the Brown-Forsythe test.

Briefly, we first centred the phenotype values (at zero) in each

genotype group to avoid inflated variance in the presence of

marginal effects in the group of all homozygote individuals. We

denote these centred phenotypes by z, where

zi~

yi{mAA if gi~AA

yi{mAB if gi~AB

yi{mBB if gi~BB

8><
>:

Here gi stands for the genotype of individual i, and mj represents

the median phenotype value in genotype group j, where j can take

the values of AA, AB or BB. We then regress the absolute

deviations from the median onto a 0–1 coded genotype group

identifier (1 for heterozygous and 0 for homozygous individuals) in

order to estimate the POE effect size [31]. This regression result in

a slope estimate

b̂b~ahet{ahom,

where ahet~
X

i:gi~AB

Dzi D=nAB and ahom~
X

i:gi~AA

Dzi Dz
X

i:gi~BB

Dzi D

0
@

1
A

=(nAAznBB). The corresponding standard error is

SEb
2~

RSS

n{1

�
nAB(nAAznBB)

n
,

where

RSS~
X

i

(zi{a)2{b̂b2nAB(nAAznBB)=n and a~
X

i

Dzi D=n:

Finally, the POE P-value is assigned based on the test statistic

b̂b=SEb~N(0,1). The test was extended to imputed genotype

probabilities and implemented in the latest version (v0.98) of the

Quicktest software (http://www3.unil.ch/wpmu/sgg/quicktest/).

The robustness of this test to deviations from normality has been

studied in [32] and its power in [31].

SNP selection strategy
We applied our POE test genome-wide to all HapMap imputed

markers in a set of cohorts and results were combined across

cohorts using fixed-effect inverse-variance weighting meta-analy-

sis. SNPs were selected for replication if they met at least one of the

following two criteria: (1) POE P-value ,561026 or (2) POE P-

value ,561024 and within 500 kb of previously reported

imprinted regions according to the Catalogue of Parent of Origin

Effects database (http://igc.otago.ac.nz/home.html). At loci

which met either criteria, a lead SNP (with the strongest POE

association) was identified; other markers within 1 Mb or in LD

(r2.0.1) were excluded from further investigations. In total

2,673,768 HapMap imputed and genotyped SNPs were analysed,
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of which 29,457 were considered as lying in imprinted regions,

criterion (2). Using the procedure of Gao et al. [33] we estimated

the effective number of tests considered by each criterion to be

,1,000,000 and 6,100 respectively, justifying the ,100 fold drop

in the P-value threshold applied to the second criterion.

Testing in family-based studies
We tested our findings in family-based studies using a simplified

parental asymmetry test [34] (PAT). For each target SNP, in each

family we searched for trios (or parent-offspring pairs) with

heterozygous offspring and determined the parent of origin of the

alleles (whenever possible, i.e. at least one homozygous parent).

From each family at most one heterozygous offspring with known

parental origin was then collected and grouped according to the

parental origin of the alleles. Note that although POE is acting in

every genotype group, it can only be detected in the heterozygous

group.

As at the discovery phase, we used sex-, age- and age2-corrected

BMI residuals as phenotype. The equality of phenotypic means in

the two groups was tested using a Student t-test. When significant

differences were detected we also estimated the difference between

paternal and maternal effect sizes, which is simply the difference

between the phenotype averages in the paternal- and maternal-

groups.

Effect size estimation
In order to estimate paternal bP) and maternal (bM ) effect sizes

it is sufficient to know their mean (bMzbP)=2 and their difference

(bM{bP). The difference between paternal and maternal effect

alleles can also be derived from GWAS of unrelated individuals. It

is easy to see that the test statistic defined as

T~4 s2
AB{

(nAA{1)s2
AAz(nBB{1)s2

BB

nAAznBB{2

� �

gives an unbiased estimate of (bM{bP)2. Since Var(s2
oo)~

s4
oo

2

noo{1
, the variance of T is &

1

nAB

z
1

nAAznBB

. Therefore,

the absolute difference in paternal and maternal effects (DbM{bPD)
can be estimated if the phenotypic variances in the three genotype

groups are known. However, these estimates will be strongly

subject to the winner’s curse [35], thus we used the family studies

to derive more reliable estimates of (bM{bP). To reduce the

effect of differences in the distribution of BMI between the family-

based studies, we meta-analysed the difference estimates

(bM{bP) from each study in order to obtain a combined estimate

of (bM{bP). The average of the maternal- and paternal effects,

(bMzbP)=2, is the association effect size using a simple additive

genetic model, which can be most accurately estimated from the

largest-to-date meta-analytic study on BMI [10] (including

,250,000 individuals).

Effect of phenotype transformation in case of marginal
association

If there is an additive marginal genetic effect influencing the

trait certain transformations may inflate the phenotypic variance

of the heterozygous group. Let m be the phenotypic mean in the

heterozygous group and d the marginal effect of the SNP (on the

original scale). Let g(t) denote an S-shaped transformation

function of the form
1

1zea(t{m)
that is applied to the trait.

In the following we show that for any d value arbitrarily large

phenotypic variance inflation can be achieved in the heterozygous

group, compared to the two homozygous groups by an appropri-

ate parameter choice for a. Using a second order Taylor

expansion the variance of the transformed phenotype in the

heterozygous group can be estimated by

Var(g(yDG~AB))&g0(m)2s2

z
1

4
g00(m)½Var((yDG~AB)2){4m2s2�

If we assume the phenotype follows a Gaussian distribution

(yDG) then, Var((yDG~AB)2) simplifies to 4m2s2z2s4 and thus

Var(g(yDG~AB))&g0(m)2s2z
1

2
g00(m)2s4

Without loss of generality one can assume that s2~1. The

variance in AA genotype group can be estimated similarly and

thus

Var(g(yDG~AB)){Var(g(yDG~AA))

&½g0(m)2{g0(m{d)2�z 1

2
½g00(m)2{g00(m{d)2�

Using the special form of g(t), the variance difference can be

expressed as

Var(g(yDG~AB)){Var(g(yDG~AA))

&a2 1

16
{

e2ad

(1zead)4

� �
{

a2

2

ead(1{ead)

(1zead)3

� �

~a2 1

16
{

e2ad

(1zead)4
{

ead(1{ead)

2(1zead)3

� �

~a2 1

16
{f (a,d)

� �

and since g0(m{d)~g0(mzd) and g00(m{d)~{g00(mzd)

Var(g(yDG~AB)){Var(g(yDG~BB))

&Var(g(yDG~AB)){Var(g(yDG~AA)):

It is easy to see that for a fixed d

lim
a??

f (a,d)~0

As a??, f (a,d)?0 faster than a2??, thus for any effect size

d we can find a transformation function g such that the variance

inflation of the heterozygous group exceeds any arbitrary

threshold.

Cell lines, nucleic acids isolation, sequencing and qPCR
Lymphoblastoid cell lines were derived from peripheral blood

leukocytes of 95 members of 11 CEPH families [36] (#102, #884,

#1333, #1340, #1341, #1345, #1346, #1347, #1362, #1408,

#13292). They were purchased from the Coriell Cell Repository
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(http://ccr.coriell.org/), and cultured as previously described [37].

DNA was extracted by using the QIAamp DNA Mini kit

(QIAGEN), and RNA by using the RNeasy Mini kit (QIAGEN),

according to the manufacturer’s instructions. Primer sequences

were designed to amplify a 328-bp region on chromosome 8 that

spans the rs2471083 polymorphism (forward primer: 59-ACCA-

CAGAAGTCAGTAGACGAG-39; reverse primer: 59- GTGA-

CATTGGGAGCATGGGA-39) and a 146-bp region on chromo-

some 20 that spans the rs3092611 polymorphism (forward primer:

59-GCCACCAGTGGTCTGATAGT-39; reverse primer: 59-

TAACTCGTCATTCTGCCCTGG -39). PCR amplification

was performed in a 25 ml reaction using GoTaq polymerase

(Promega). After purification of PCR products (ExoSAP-IT, USB),

sequencing reactions were carried out by using 1 ml of each of the

3.2 mM sequencing primers and 0.5 ml of BigDye Terminator v1.1

(Applied Biosystems). Following on-column purification (EdgeBio),

sequencing products were run on an ABI-3130 XLS sequencer

(Applied Biosystem). To synthesize cDNA, 2 mg of total RNA was

retrotranscribed using the Superscript III reverse transcriptase

(Invitrogen/Life Technologies) according to the manufacturer’s

instructions and a mix of random hexamers and oligo-dT that

facilitate the detection of poorly expressed genes. To validate

primers for qPCR, we first performed a series of test amplifications

by using a defined range of primer concentrations (50–200 nM).

We then loaded 10 ml of each qPCR product on 1% agarose gels

to check the specificity of the amplification product, which should

correspond to a 113-bp (KCNK9) and 148-bp (SLC2A10)

fragment. To test KCNK9 and SLC2A10 PCR efficiency a

standard curve made of five serial dilutions of brain and lung

cDNA were used, respectively, since the two genes are known to

be highly expressed in these organs. We obtained a standard curve

slope of 23.49 for KCNK9 and of 23.37 for SLC2A10,

corresponding to 94% and 98% PCR efficiency. For more details

see Supplemental Data S1.

Comparing Ct values
The output of the analysis was threshold cycles (Ct), i.e. the

number of cycles at which the fluorescent signal of the reaction

crosses a pre-determined threshold value. Since standard quanti-

fication methods (including normalization by housekeeping genes)

introduce a considerable amount of experimental noise for very

lowly expressed genes, raw Ct values were used to perform an

absolute quantification of KCNK9 and SLC2A10 transcripts. As

negative controls, housekeeping genes (HPRT1, GAPDH) were

also tested for parent-origin-effect to exclude the possibility that

the observed difference in KCNK9 and SLC2A10 expression

levels was due to the sample preparation process. Raw Ct values

were inverse-normal quantile transformed and a linear mixed

model was fitted (using the R function lmer) modelling the

technical replicates as random effects and parental origin as a fixed

effect.

Supporting Information

Figure S1 QQ-plot of the POE test P-values for SNPs in

imprinted regions (left) and for the whole genome (right).

(PNG)

Figure S2 Left hand side plots describe SNP-methylation

associations (mQTLs), where each point is a methylation probe.

X-axis represents their physical position and y-axis the 2log10

association P-value with the target SNP, whose location is

indicated by the dashed line. Note that rs3092611 was used as a

proxy for rs3091869 (r2 = 0.998). The corresponding QQ-plots

appear on the right hand side. Neighbouring methylation probes

are strongly correlated therefore expected P-values were computed

by estimating the effective number of tests For expected P-values

we computed the effective number of tests [33].

(PNG)

Figure S3 Left hand side plots describe methylation associations

with BMI in MZ twins. Each point is a methylation probe,

X-axis represents their physical position and y-axis the 2log10

association P-value with BMI. Location of the target SNP is

indicated by the dashed line. Note that rs3092611 was used as a

proxy for rs3091869 (r2 = 0.998). The corresponding QQ-plots

appear on the right hand side. Neighbouring methylation probes

are strongly correlated therefore expected P-values were computed

by estimating the effective number of tests For expected P-values

we computed the effective number of tests [33].

(PNG)

Figure S4 POE association results for previously reported

imprinted BMI linkage regions. Second dashed line corresponds

to the Benjamini-Hochberg 5% FDR threshold.

(PNG)

Figure S5 POE association P-value QQ-plot for the top 58

independent SNPs with marginal BMI-association P-value ,1025

in Speliotes et al. [10].

(PNG)

Table S1 Description of the BMI distribution in the participat-

ing cohorts.

(XLSX)

Table S2 Brief summary of the participating cohorts.

(XLSX)

Table S3 Information on the genotyping methods in the

participating cohorts.

(XLSX)

Table S4 Replication of the 6 discovery SNPs in family studies.

Extended version of Table 2.

(XLSX)

Table S5 Parental asymmetry test results for our 6 candidate

SNPs in adolescent population.

(XLSX)

Table S6 Analysis of the effect of gender- and age-correction

and phenotype transformations on the POE association results.

(XLSX)

Table S7 Genotyping results and parental allele determination

for members of the CEPH families.

(XLSX)

Table S8 Association results between methylation- and BMI-

differences among MZ twins of the TwinsUK study.

(XLSX)

Table S9 POE association P-values for the 32 SNPs associated

with BMI in the largest-to-date meta-analysis [10].

(XLSX)

Table S10 POE association P-values for the top 58 independent

SNPs with BMI-association P-value ,1025 in the largest-to-date

meta-analysis [10].

(XLSX)

Data S1 Supporting information contain text on the expression-

and methylation analysis, the effective sample size derivation in

mother-offspring vs trio studies, POE look-ups for SNPs with

marginal BMI association, study descriptions and acknowledgements.

(DOCX)
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