249 research outputs found
Rattling Europeâs ordoliberal âiron cageâ : the contestation of austerity in Southern Europe
This article explains the popular revolt against austerity in Southern Europe as the outcome of profound politico-economic changes that are shaped by the transformation of the European Unionâs (EUâs) macro-economic governance. It comprises three parts. The first part demonstrates how ordoliberalism â the Germanic variant of (neo)liberal economic thinking â was embedded in the EUâs new macro-economic governance, in processes that constitutionalise austerity and remove democratic controls over the economy. The second part examines the impact of austerity-driven reforms on welfare and employment in the aftermath of the sovereign debt crisis. These reforms undermined the social reproduction of Southern Europeâs familistic welfare model by destabilising three key pillars of social protection: employment security for householdsâ primary earners; small property ownership; and pension adequacy. The third part analyses the emergence of anti-austerity social politics in Southern Europe, both parliamentary and grassroots, and assesses their effectiveness in light of the collapse of public trust in both EU and domestic political institutions. The article concludes with our reflections on the fragility of EUâs integration process under the hegemony of ordoliberalism
Performance of the CMS Cathode Strip Chambers with Cosmic Rays
The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device
in the CMS endcaps. Their performance has been evaluated using data taken
during a cosmic ray run in fall 2008. Measured noise levels are low, with the
number of noisy channels well below 1%. Coordinate resolution was measured for
all types of chambers, and fall in the range 47 microns to 243 microns. The
efficiencies for local charged track triggers, for hit and for segments
reconstruction were measured, and are above 99%. The timing resolution per
layer is approximately 5 ns
Investigating fairness in global supply chains: applying an extension of the living wage to the Western European clothing supply chain.
YesThis paper explores the issue of fairness in global supply chains. Taking the Western European clothing supply chain as a case study, we demonstrate how applying a normative indicator in Social Life Cycle Assessment (SLCA) can contribute academic and practical insights into debates on fairness. To do so, we develop a new indicator that addresses some of the limitations of the living wage for SLCA.
We extend the standard form of living wage available for developing countries to include income tax and social security contributions. We call this extension 'living labour compensation'. Using publically available data, we estimate net living wages, gross living wages, and living labour compensation rates for Brazil, Russia, India, and China (BRIC) in 2005. We then integrate living labour compensation rates into an input-output framework, which we use to compare living labour compensation and actual labour compensation in the BRIC countries in the Western European clothing supply chain in 2005.
We find that in 2005, actual labour compensation in the Western European clothing supply chain was around half of the living labour compensation level, with the greatest difference being in the Agricultural sector. Therefore, we argue that BRIC pay in the Western European clothing supply chain was unfair. Furthermore, our living labour compensation estimates for BRIC in 2005 are ~Â 35% higher than standard living wage estimates. Indeed, adding income taxes and employee social security contributions alone increases the living wage by ~Â 10%. Consequently, we argue there is a risk that investigations based on living wages are not using a representative measure of fairness from the employee's perspective and are substantially underestimating the cost of living wages from an employer's perspective. Finally, we discuss implications for retailers and living wage advocacy groups.
Living labour compensation extends the living wage, maintaining its strengths and addressing key weaknesses. It can be estimated for multiple countries from publically available data and can be applied in an input-output framework. Therefore, it is able to provide a normative assessment of fairness in complex global supply chains. Applying it to the Western European clothing supply chain, we were able to show that pay for workers in Brazil, Russia, India, and China is unfair, and draw substantive conclusions for practice
Identification of Conserved and HLA Promiscuous DENV3 T-Cell Epitopes
Anti-dengue T-cell responses have been implicated in both protection and immunopathology. However, most of the T-cell studies for dengue include few epitopes, with limited knowledge of their inter-serotype variation and the breadth of their human leukocyte antigen (HLA) affinity. In order to expand our knowledge of HLA-restricted dengue epitopes, we screened T-cell responses against 477 overlapping peptides derived from structural and non-structural proteins of the dengue virus serotype 3 (DENV3) by use of HLA class I and II transgenic mice (TgM): A2, A24, B7, DR2, DR3 and DR4. TgM were inoculated with peptides pools and the T-cell immunogenic peptides were identified by ELISPOT. Nine HLA class I and 97 HLA class II novel DENV3 epitopes were identified based on immunogenicity in TgM and their HLA affinity was further confirmed by binding assays analysis. A subset of these epitopes activated memory T-cells from DENV3 immune volunteers and was also capable of priming naïve T-cells, ex vivo, from dengue IgG negative individuals. Analysis of inter- and intra-serotype variation of such an epitope (A02-restricted) allowed us to identify altered peptide ligands not only in DENV3 but also in other DENV serotypes. These studies also characterized the HLA promiscuity of 23 HLA class II epitopes bearing highly conserved sequences, six of which could bind to more than 10 different HLA molecules representing a large percentage of the global population. These epitope data are invaluable to investigate the role of T-cells in dengue immunity/pathogenesis and vaccine design. © 2013 Nascimento et al
State of the Antarctic and Southern Ocean Climate System
This paper reviews developments in our understanding of the state of the Antarctic and Southern Ocean climate and its relation to the global climate system over the last few millennia. Climate over this and earlier periods has not been stable, as evidenced by the occurrence of abrupt changes in atmospheric circulation and temperature recorded in Antarctic ice core proxies for past climate. Two of the most prominent abrupt climate change events are characterized by intensification of the circumpolar westerlies (also known as the Southern Annular Mode) between âŒ6000 and 5000 years ago and since 1200â1000 years ago. Following the last of these is a period of major trans-Antarctic reorganization of atmospheric circulation and temperature between A.D. 1700 and 1850. The two earlier Antarctic abrupt climate change events appear linked to but predate by several centuries even more abrupt climate change in the North Atlantic, and the end of the more recent event is coincident with reorganization of atmospheric circulation in the North Pacific. Improved understanding of such events and of the associations between abrupt climate change events recorded in both hemispheres is critical to predicting the impact and timing of future abrupt climate change events potentially forced by anthropogenic changes in greenhouse gases and aerosols. Special attention is given to the climate of the past 200 years, which was recorded by a network of recently available shallow firn cores, and to that of the past 50 years, which was monitored by the continuous instrumental record. Significant regional climate changes have taken place in the Antarctic during the past 50 years. Atmospheric temperatures have increased markedly over the Antarctic Peninsula, linked to nearby ocean warming and intensification of the circumpolar westerlies. Glaciers are retreating on the peninsula, in Patagonia, on the sub-Antarctic islands, and in West Antarctica adjacent to the peninsula. The penetration of marine air masses has become more pronounced over parts of West Antarctica. Above the surface, the Antarctic troposphere has warmed during winter while the stratosphere has cooled year-round. The upper kilometer of the circumpolar Southern Ocean has warmed, Antarctic Bottom Water across a wide sector off East Antarctica has freshened, and the densest bottom water in the Weddell Sea has warmed. In contrast to these regional climate changes, over most of Antarctica, near-surface temperature and snowfall have not increased significantly during at least the past 50 years, and proxy data suggest that the atmospheric circulation over the interior has remained in a similar state for at least the past 200 years. Furthermore, the total sea ice cover around Antarctica has exhibited no significant overall change since reliable satellite monitoring began in the late 1970s, despite large but compensating regional changes. The inhomogeneity of Antarctic climate in space and time implies that recent Antarctic climate changes are due on the one hand to a combination of strong multidecadal variability and anthropogenic effects and, as demonstrated by the paleoclimate record, on the other hand to multidecadal to millennial scale and longer natural variability forced through changes in orbital insolation, greenhouse gases, solar variability, ice dynamics, and aerosols. Model projections suggest that over the 21st century the Antarctic interior will warm by 3.4° ± 1°C, and sea ice extent will decrease by âŒ30%. Ice sheet models are not yet adequate enough to answer pressing questions about the effect of projected warming on mass balance and sea level. Considering the potentially major impacts of a warming climate on Antarctica, vigorous efforts are needed to better understand all aspects of the highly coupled Antarctic climate system as well as its influence on the Earth\u27s climate and oceans
Identification and reconstruction of low-energy electrons in the ProtoDUNE-SP detector
Measurements of electrons from interactions are crucial for the Deep
Underground Neutrino Experiment (DUNE) neutrino oscillation program, as well as
searches for physics beyond the standard model, supernova neutrino detection,
and solar neutrino measurements. This article describes the selection and
reconstruction of low-energy (Michel) electrons in the ProtoDUNE-SP detector.
ProtoDUNE-SP is one of the prototypes for the DUNE far detector, built and
operated at CERN as a charged particle test beam experiment. A sample of
low-energy electrons produced by the decay of cosmic muons is selected with a
purity of 95%. This sample is used to calibrate the low-energy electron energy
scale with two techniques. An electron energy calibration based on a cosmic ray
muon sample uses calibration constants derived from measured and simulated
cosmic ray muon events. Another calibration technique makes use of the
theoretically well-understood Michel electron energy spectrum to convert
reconstructed charge to electron energy. In addition, the effects of detector
response to low-energy electron energy scale and its resolution including
readout electronics threshold effects are quantified. Finally, the relation
between the theoretical and reconstructed low-energy electron energy spectrum
is derived and the energy resolution is characterized. The low-energy electron
selection presented here accounts for about 75% of the total electron deposited
energy. After the addition of lost energy using a Monte Carlo simulation, the
energy resolution improves from about 40% to 25% at 50~MeV. These results are
used to validate the expected capabilities of the DUNE far detector to
reconstruct low-energy electrons.Comment: 19 pages, 10 figure
Low exposure long-baseline neutrino oscillation sensitivity of the DUNE experiment
The Deep Underground Neutrino Experiment (DUNE) will produce world-leading
neutrino oscillation measurements over the lifetime of the experiment. In this
work, we explore DUNE's sensitivity to observe charge-parity violation (CPV) in
the neutrino sector, and to resolve the mass ordering, for exposures of up to
100 kiloton-megawatt-years (kt-MW-yr). The analysis includes detailed
uncertainties on the flux prediction, the neutrino interaction model, and
detector effects. We demonstrate that DUNE will be able to unambiguously
resolve the neutrino mass ordering at a 3 (5) level, with a 66
(100) kt-MW-yr far detector exposure, and has the ability to make strong
statements at significantly shorter exposures depending on the true value of
other oscillation parameters. We also show that DUNE has the potential to make
a robust measurement of CPV at a 3 level with a 100 kt-MW-yr exposure
for the maximally CP-violating values \delta_{\rm CP}} = \pm\pi/2.
Additionally, the dependence of DUNE's sensitivity on the exposure taken in
neutrino-enhanced and antineutrino-enhanced running is discussed. An equal
fraction of exposure taken in each beam mode is found to be close to optimal
when considered over the entire space of interest
A Gaseous Argon-Based Near Detector to Enhance the Physics Capabilities of DUNE
This document presents the concept and physics case for a magnetized gaseous argon-based detector system (ND-GAr) for the Deep Underground Neutrino Experiment (DUNE) Near Detector. This detector system is required in order for DUNE to reach its full physics potential in the measurement of CP violation and in delivering precision measurements of oscillation parameters. In addition to its critical role in the long-baseline oscillation program, ND-GAr will extend the overall physics program of DUNE. The LBNF high-intensity proton beam will provide a large flux of neutrinos that is sampled by ND-GAr, enabling DUNE to discover new particles and search for new interactions and symmetries beyond those predicted in the Standard Model
- âŠ