1,384 research outputs found

    Distinguishing Social from Nonsocial Navigation in Moving Animal Groups

    Get PDF
    Many animals, such as migrating shoals of fish, navigate in groups. Knowing the mechanisms involved in animal navigation is important when it comes to explaining navigation accuracy, dispersal patterns, population and evolutionary dynamics, and consequently, the design of conservation strategies. When navigating toward a common target, animals could interact socially by sharing available information directly or indirectly, or each individual could navigate by itself and aggregations may not disperse because all animals are moving toward the same target. Here we present an analysis technique that uses individual movement trajectories to determine the extent to which individuals in navigating groups interact socially, given knowledge of their target. The basic idea of our approach is that the movement directions of individuals arise from a combination of responses to the environment and to other individuals. We estimate the relative importance of these responses, distinguishing between social and nonsocial interactions. We develop and test our method, using simulated groups, and we demonstrate its applicability to empirical data in a case study on groups of guppies moving toward shelter in a tank. Our approach is generic and can be extended to different scenarios of animal group movement. © 2012 by The University of Chicago

    Fear of predation drives stable and differentiated social relationships in guppies

    Get PDF
    This is the author accepted manuscript. The final version is available from Springer Nature via the DOI in this record.Social relationships can have important consequences for fitness in animals. Whilst numerous studies have shown that individuals often join larger groups in response to perceived predation risk (i.e. fear of predation), the importance of predation risk in driving the formation and stability of social relationships within groups has been relatively ignored. We experimentally tested how predation threat influenced fine-scale social network structure using Trinidadian guppies (Poecilia reticulata). When perceived predation risk was high, individuals developed stable and more differentiated social ties compared to when perceived risk was low. Intriguingly, social differentiation coincided with shoals being somewhat smaller under high-perceived risk, suggesting a possible conflict between forming stable social relationships and larger social groups. Individuals most at risk of predation (large and bold individuals) showed the most exaggerated responses in several social measures. Taken together, we provide the first experimental evidence that proximate risk of predation can increase the intensity of social relationships and fine-scale social structure in animal populations.DPC acknowledges funding from the National Environmental Research Council (NE/E001181/1) and Leverhulme Trust (RPG-175) and SKD and DPC acknowledge funding from The Danish Council for Independent Research (DFF – 1323-00105)

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Search for direct pair production of the top squark in all-hadronic final states in proton-proton collisions at s√=8 TeV with the ATLAS detector

    Get PDF
    The results of a search for direct pair production of the scalar partner to the top quark using an integrated luminosity of 20.1fb−1 of proton–proton collision data at √s = 8 TeV recorded with the ATLAS detector at the LHC are reported. The top squark is assumed to decay via t˜→tχ˜01 or t˜→ bχ˜±1 →bW(∗)χ˜01 , where χ˜01 (χ˜±1 ) denotes the lightest neutralino (chargino) in supersymmetric models. The search targets a fully-hadronic final state in events with four or more jets and large missing transverse momentum. No significant excess over the Standard Model background prediction is observed, and exclusion limits are reported in terms of the top squark and neutralino masses and as a function of the branching fraction of t˜ → tχ˜01 . For a branching fraction of 100%, top squark masses in the range 270–645 GeV are excluded for χ˜01 masses below 30 GeV. For a branching fraction of 50% to either t˜ → tχ˜01 or t˜ → bχ˜±1 , and assuming the χ˜±1 mass to be twice the χ˜01 mass, top squark masses in the range 250–550 GeV are excluded for χ˜01 masses below 60 GeV

    Two independent proteomic approaches provide a comprehensive analysis of the synovial fluid proteome response to Autologous Chondrocyte Implantation

    Get PDF
    Background: Autologous chondrocyte implantation (ACI) has a failure rate of approximately 20%, but it is yet to be fully understood why. Biomarkers are needed that can pre-operatively predict in which patients it is likely to fail, so that alternative or individualised therapies can be offered. We previously used label-free quantitation (LF) with a dynamic range compression proteomic approach to assess the synovial fluid (SF) of ACI responders and non-responders. However, we were able to identify only a few differentially abundant proteins at baseline. In the present study, we built upon these previous findings by assessing higher-abundance proteins within this SF, providing a more global proteomic analysis on the basis of which more of the biology underlying ACI success or failure can be understood. Methods: Isobaric tagging for relative and absolute quantitation (iTRAQ) proteomic analysis was used to assess SF from ACI responders (mean Lysholm improvement of 33; n = 14) and non-responders (mean Lysholm decrease of 14; n = 13) at the two stages of surgery (cartilage harvest and chondrocyte implantation). Differentially abundant proteins in iTRAQ and combined iTRAQ and LF datasets were investigated using pathway and network analyses. Results: iTRAQ proteomic analysis confirmed our previous finding that there is a marked proteomic shift in response to cartilage harvest (70 and 54 proteins demonstrating ≥ 2.0-fold change and p < 0.05 between stages I and II in responders and non-responders, respectively). Further, it highlighted 28 proteins that were differentially abundant between responders and non-responders to ACI, which were not found in the LF study, 16 of which were altered at baseline. The differential expression of two proteins (complement C1s subcomponent and matrix metalloproteinase 3) was confirmed biochemically. Combination of the iTRAQ and LF proteomic datasets generated in-depth SF proteome information that was used to generate interactome networks representing ACI success or failure. Functional pathways that are dysregulated in ACI non-responders were identified, including acute-phase response signalling. Conclusions: Several candidate biomarkers for baseline prediction of ACI outcome were identified. A holistic overview of the SF proteome in responders and non-responders to ACI  has been profiled, providing a better understanding of the biological pathways underlying clinical outcome, particularly the differential response to cartilage harvest in non-responders

    The clinical course of low back pain: a meta-analysis comparing outcomes in randomised clinical trials (RCTs) and observational studies.

    Get PDF
    BACKGROUND: Evidence suggests that the course of low back pain (LBP) symptoms in randomised clinical trials (RCTs) follows a pattern of large improvement regardless of the type of treatment. A similar pattern was independently observed in observational studies. However, there is an assumption that the clinical course of symptoms is particularly influenced in RCTs by mere participation in the trials. To test this assumption, the aim of our study was to compare the course of LBP in RCTs and observational studies. METHODS: Source of studies CENTRAL database for RCTs and MEDLINE, CINAHL, EMBASE and hand search of systematic reviews for cohort studies. Studies include individuals aged 18 or over, and concern non-specific LBP. Trials had to concern primary care treatments. Data were extracted on pain intensity. Meta-regression analysis was used to compare the pooled within-group change in pain in RCTs with that in cohort studies calculated as the standardised mean change (SMC). RESULTS: 70 RCTs and 19 cohort studies were included, out of 1134 and 653 identified respectively. LBP symptoms followed a similar course in RCTs and cohort studies: a rapid improvement in the first 6 weeks followed by a smaller further improvement until 52 weeks. There was no statistically significant difference in pooled SMC between RCTs and cohort studies at any time point:- 6 weeks: RCTs: SMC 1.0 (95% CI 0.9 to 1.0) and cohorts 1.2 (0.7to 1.7); 13 weeks: RCTs 1.2 (1.1 to 1.3) and cohorts 1.0 (0.8 to 1.3); 27 weeks: RCTs 1.1 (1.0 to 1.2) and cohorts 1.2 (0.8 to 1.7); 52 weeks: RCTs 0.9 (0.8 to 1.0) and cohorts 1.1 (0.8 to 1.6). CONCLUSIONS: The clinical course of LBP symptoms followed a pattern that was similar in RCTs and cohort observational studies. In addition to a shared 'natural history', enrolment of LBP patients in clinical studies is likely to provoke responses that reflect the nonspecific effects of seeking and receiving care, independent of the study design

    Evolution of non-kin cooperation: social assortment by cooperative phenotype in guppies

    Get PDF
    This is the final version. Available from The Royal Society via the DOI in this record.Data accessibility: The data used in this study are available at the Dryad Digital Repository: doi:10.5061/dryad.js446q8Cooperation among non-kin constitutes a conundrum for evolutionary biology. Theory suggests that non-kin cooperation can evolve if individuals differ consistently in their cooperative phenotypes and assort socially by these, such that cooperative individuals interact predominantly with one another. However, our knowledge of the role of cooperative phenotypes in the social structuring of real-world animal populations is minimal. In this study, we investigated cooperative phenotypes and their link to social structure in wild Trinidadian guppies (Poecilia reticulata). We first investigated whether wild guppies are repeatable in their individual levels of cooperativeness (i.e. have cooperative phenotypes) and found evidence for this in seven out of eight populations, a result which was mostly driven by females. We then examined the social network structure of one of these populations where the expected fitness impact of cooperative contexts is relatively high, and found assortment by cooperativeness, but not genetic relatedness. In contrast, in accordance with our expectations we did not find assortment by cooperativeness in a population where the expected fitness impact of cooperative contexts is lower. Our results provide empirical support for current theory and suggest that assortment by cooperativeness is important for the evolution and persistence of non-kin cooperation in real-world populations.Leverhulme TrustDanish Council for Independent Researc

    Charged-particle distributions at low transverse momentum in √s=13 13 TeV pp interactions measured with the ATLAS detector at the LHC

    Get PDF
    Measurements of distributions of charged particles produced in proton–proton collisions with a centre-of-mass energy of 13 TeV are presented. The data were recorded by the ATLAS detector at the LHC and correspond to an integrated luminosity of 151 μb −1 μb−1 . The particles are required to have a transverse momentum greater than 100 MeV and an absolute pseudorapidity less than 2.5. The charged-particle multiplicity, its dependence on transverse momentum and pseudorapidity and the dependence of the mean transverse momentum on multiplicity are measured in events containing at least two charged particles satisfying the above kinematic criteria. The results are corrected for detector effects and compared to the predictions from several Monte Carlo event generators

    Search for supersymmetry at √s = 13 TeV in final states with jets and two same-sign leptons or three leptons with the ATLAS detector

    Get PDF
    A search for strongly produced supersymmetric particles is conducted using signatures involving multiple energetic jets and either two isolated leptons (e or μμ ) with the same electric charge or at least three isolated leptons. The search also utilises b-tagged jets, missing transverse momentum and other observables to extend its sensitivity. The analysis uses a data sample of proton–proton collisions at s√=13s=13 TeV recorded with the ATLAS detector at the Large Hadron Collider in 2015 corresponding to a total integrated luminosity of 3.2 fb −1−1. No significant excess over the Standard Model expectation is observed. The results are interpreted in several simplified supersymmetric models and extend the exclusion limits from previous searches. In the context of exclusive production and simplified decay modes, gluino masses are excluded at 95%95% confidence level up to 1.1–1.3 TeV for light neutralinos (depending on the decay channel), and bottom squark masses are also excluded up to 540 GeV. In the former scenarios, neutralino masses are also excluded up to 550–850 GeV for gluino masses around 1 TeV

    Measurement of the inelastic proton-proton cross section at √s=13 TeV with the ATLAS detector at the LHC

    Get PDF
    This Letter presents a measurement of the inelastic proton-proton cross section using 60  μb −1 of pp collisions at a center-of-mass energy √s of 13 TeV with the ATLAS detector at the LHC. Inelastic interactions are selected using rings of plastic scintillators in the forward region (2.0710 −6 , where M X is the larger invariant mass of the two hadronic systems separated by the largest rapidity gap in the event. In this ξ range the scintillators are highly efficient. For diffractive events this corresponds to cases where at least one proton dissociates to a system with M X >13  GeV . The measured cross section is compared with a range of theoretical predictions. When extrapolated to the full phase space, a cross section of 78.1±2.9  mb is measured, consistent with the inelastic cross section increasing with center-of-mass energy
    corecore