1,626 research outputs found

    MRI based preterm white matter injury classification: the importance of sequential imaging in determining severity of injury

    Get PDF
    The evolution of non-hemorrhagic white matter injury (WMI) based on sequential magnetic resonance imaging (MRI) has not been well studied. Our aim was to describe sequential MRI findings in preterm infants with non-hemorrhagic WMI and to develop an MRI classification system for preterm WMI based on these findings.Eighty-two preterm infants (gestation ≤35 weeks) were retrospectively included. WMI was diagnosed and classified based on sequential cranial ultrasound (cUS) and confirmed on MRI.138 MRIs were obtained at three time-points: early (<2 weeks; n = 32), mid (2-6 weeks; n = 30) and term equivalent age (TEA; n = 76). 63 infants (77%) had 2 MRIs during the neonatal period. WMI was non-cystic in 35 and cystic in 47 infants. In infants with cystic-WMI early MRI showed extensive restricted diffusion abnormalities, cysts were already present in 3 infants; mid MRI showed focal or extensive cysts, without acute diffusion changes. A significant reduction in the size and/or extent of the cysts was observed in 32% of the infants between early/mid and TEA MRI. In 4/9 infants previously seen focal cysts were no longer identified at TEA. All infants with cystic WMI showed ≥2 additional findings at TEA: significant reduction in WM volume, mild-moderate irregular ventriculomegaly, several areas of increased signal intensity on T1-weighted-images, abnormal myelination of the PLIC, small thalami.In infants with extensive WM cysts at 2-6 weeks, cysts may be reduced in number or may even no longer be seen at TEA. A single MRI at TEA, without taking sequential cUS data and pre-TEA MRI findings into account, may underestimate the extent of WMI; based on these results we propose a new MRI classification for preterm non-hemorrhagic WMI

    A Geographically-Restricted but Prevalent Mycobacterium tuberculosis Strain Identified in the West Midlands Region of the UK between 1995 and 2008

    Get PDF
    Background: We describe the identification of, and risk factors for, the single most prevalent Mycobacterium tuberculosis strain in the West Midlands region of the UK.Methodology/Principal Findings: Prospective 15-locus MIRU-VNTR genotyping of all M. tuberculosis isolates in the West Midlands between 2004 and 2008 was undertaken. Two retrospective epidemiological investigations were also undertaken using univariable and multivariable logistic regression analysis. The first study of all TB patients in the West Midlands between 2004 and 2008 identified a single prevalent strain in each of the study years (total 155/3,056 (5%) isolates). This prevalent MIRU-VNTR profile (32333 2432515314 434443183) remained clustered after typing with an additional 9-loci MIRU-VNTR and spoligotyping. The majority of these patients (122/155, 79%) resided in three major cities located within a 40 km radius. From the apparent geographical restriction, we have named this the "Mercian" strain. A multivariate analysis of all TB patients in the West Midlands identified that infection with a Mercian strain was significantly associated with being UK-born (OR = 9.03, 95% CI = 4.56-17.87, p 65 years old (OR = 0.25, 95% CI = 0.09-0.67, p < 0.01). A second more detailed investigation analyzed a cohort of 82 patients resident in Wolverhampton between 2003 and 2006. A significant association with being born in the UK remained after a multivariate analysis (OR = 9.68, 95% CI = 2.00-46.78, p < 0.01) and excess alcohol intake and cannabis use (OR = 6.26, 95% CI = 1.45-27.02, p = .01) were observed as social risk factors for infection.Conclusions/Significance: The continued consistent presence of the Mercian strain suggests ongoing community transmission. Whilst significant associations have been found, there may be other common risk factors yet to be identified. Future investigations should focus on targeting the relevant risk groups and elucidating the biological factors that mediate continued transmission of this strain

    Mammillary body abnormalities and cognitive outcomes in children cooled for neonatal encephalopathy

    Get PDF
    Aim: To evaluate mammillary body abnormalities in school-age children without cerebral palsy treated with therapeutic hypothermia for neonatal hypoxic–ischaemic encephalopathy (cases) and matched controls, and associations with cognitive outcome, hippocampal volume, and diffusivity in the mammillothalamic tract (MTT) and fornix. Method: Mammillary body abnormalities were scored from T1-weighted magnetic resonance imaging (MRI) in 32 cases and 35 controls (median age [interquartile range] 7 years [6 years 7 months–7 years 7 months] and 7 years 4 months [6 years 7 months–7 years 7 months] respectively). Cognition was assessed using the Wechsler Intelligence Scale for Children, Fourth Edition. Hippocampal volume (normalized by total brain volume) was measured from T1-weighted MRI. Radial diffusivity and fractional anisotropy were measured in the MTT and fornix, from diffusion-weighted MRI using deterministic tractography. Results: More cases than controls had mammillary body abnormalities (34% vs 0%; p < 0.001). Cases with abnormal mammillary bodies had lower processing speed (p = 0.016) and full-scale IQ (p = 0.028) than cases without abnormal mammillary bodies, and lower scores than controls in all cognitive domains (p < 0.05). Cases with abnormal mammillary bodies had smaller hippocampi (left p = 0.016; right p = 0.004) and increased radial diffusivity in the right MTT (p = 0.004) compared with cases without mammillary body abnormalities. Interpretation: Cooled children with mammillary body abnormalities at school-age have reduced cognitive scores, smaller hippocampi, and altered MTT microstructure compared with those without mammillary body abnormalities, and matched controls

    The knowledge and expectations of parents about the role of antibiotic treatment in upper respiratory tract infection – a survey among parents attending the primary physician with their sick child

    Get PDF
    BACKGROUND: Upper respiratory tract infections (URTI) are common. The etiologic factor is usually viral, but many physicians prescribe antibiotics. We aimed to evaluate parents' expectations of and knowledge about the role of antibiotics in childhood URTI. METHODS: The study was conducted in thirteen primary care pediatric clinics. Parents of children aged 3 months to 6 years who attended with URTI symptoms were included when it was the first attendance in the current illness. Questionnaire about the current illness, reasons for attending and expectations from the visit, knowledge about URTI was filled before the visit. RESULTS: In 122 visits the average age was 2.8 ± 1.9 years. The main reasons for the visit were to avoid complications (81%) and to be examined (78%). Expected treatment was: cough suppressants (64%), anti-congestants (57%), paracetamol (56%), natural remedies (53%) and antibiotics (25%). In 28% the child had received antibiotics in past URTI. Only 37% thought that antibiotics would not help in URTI and 27% knew that URTI is a self-limited disease. 61% knew that URTI is a viral disease. Younger parental age and higher education were associated with lower expectations to receive antibiotics (p = 0.01, p < 0.005 respectively). While previous antibiotic treatment (p < 0.001), past perceived complications (p = 0.05) and the thought that antibiotics help in URTI (p < 0.001) were associated with a greater expectation for antibiotics. CONCLUSIONS: A quarter of the parents attending the physician with URTI are expecting to get antibiotics. Predictors were lower education, older parental age, receiving antibiotics in the past and the belief that antibiotics help in URTI

    Supervised learning for the automated transcription of spacer classification from spoligotype films

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Molecular genotyping of bacteria has revolutionized the study of tuberculosis epidemiology, yet these established laboratory techniques typically require subjective and laborious interpretation by trained professionals. In the context of a Tuberculosis Case Contact study in The Gambia we used a reverse hybridization laboratory assay called spoligotype analysis. To facilitate processing of spoligotype images we have developed tools and algorithms to automate the classification and transcription of these data directly to a database while allowing for manual editing.</p> <p>Results</p> <p>Features extracted from each of the 1849 spots on a spoligo film were classified using two supervised learning algorithms. A graphical user interface allows manual editing of the classification, before export to a database. The application was tested on ten films of differing quality and the results of the best classifier were compared to expert manual classification, giving a median correct classification rate of 98.1% (inter quartile range: 97.1% to 99.2%), with an automated processing time of less than 1 minute per film.</p> <p>Conclusion</p> <p>The software implementation offers considerable time savings over manual processing whilst allowing expert editing of the automated classification. The automatic upload of the classification to a database reduces the chances of transcription errors.</p

    Two new rapid SNP-typing methods for classifying Mycobacterium tuberculosis complex into the main phylogenetic lineages

    Get PDF
    There is increasing evidence that strain variation in Mycobacterium tuberculosis complex (MTBC) might influence the outcome of tuberculosis infection and disease. To assess genotype-phenotype associations, phylogenetically robust molecular markers and appropriate genotyping tools are required. Most current genotyping methods for MTBC are based on mobile or repetitive DNA elements. Because these elements are prone to convergent evolution, the corresponding genotyping techniques are suboptimal for phylogenetic studies and strain classification. By contrast, single nucleotide polymorphisms (SNP) are ideal markers for classifying MTBC into phylogenetic lineages, as they exhibit very low degrees of homoplasy. In this study, we developed two complementary SNP-based genotyping methods to classify strains into the six main human-associated lineages of MTBC, the 'Beijing' sublineage, and the clade comprising Mycobacterium bovis and Mycobacterium caprae. Phylogenetically informative SNPs were obtained from 22 MTBC whole-genome sequences. The first assay, referred to as MOL-PCR, is a ligation-dependent PCR with signal detection by fluorescent microspheres and a Luminex flow cytometer, which simultaneously interrogates eight SNPs. The second assay is based on six individual TaqMan real-time PCR assays for singleplex SNP-typing. We compared MOL-PCR and TaqMan results in two panels of clinical MTBC isolates. Both methods agreed fully when assigning 36 well-characterized strains into the main phylogenetic lineages. The sensitivity in allele-calling was 98.6% and 98.8% for MOL-PCR and TaqMan, respectively. Typing of an additional panel of 78 unknown clinical isolates revealed 99.2% and 100% sensitivity in allele-calling, respectively, and 100% agreement in lineage assignment between both methods. While MOL-PCR and TaqMan are both highly sensitive and specific, MOL-PCR is ideal for classification of isolates with no previous information, whereas TaqMan is faster for confirmation. Furthermore, both methods are rapid, flexible and comparably inexpensive

    Early cranial ultrasound findings among infants with neonatal encephalopathy in Uganda: an observational study.

    Get PDF
    BACKGROUND: In sub-Saharan Africa, the timing and nature of brain injury and their relation to mortality in neonatal encephalopathy (NE) are unknown. We evaluated cranial ultrasound (cUS) scans from term Ugandan infants with and without NE for evidence of brain injury. METHODS: Infants were recruited from a national referral hospital in Kampala. Cases (184) had NE and controls (100) were systematically selected unaffected term infants. All had cUS scans <36 h reported blind to NE status. RESULTS: Scans were performed at median age 11.5 (interquartile range (IQR): 5.2-20.2) and 8.4 (IQR: 3.6-13.5) hours, in cases and controls respectively. None had established antepartum injury. Major evolving injury was reported in 21.2% of the cases vs. 1.0% controls (P < 0.001). White matter injury was not significantly associated with bacteremia in encephalopathic infants (odds ratios (OR): 3.06 (95% confidence interval (CI): 0.98-9.60). Major cUS abnormality significantly increased the risk of neonatal death (case fatality 53.9% with brain injury vs. 25.9% without; OR: 3.34 (95% CI: 1.61-6.95)). CONCLUSION: In this low-resource setting, there was no evidence of established antepartum insult, but a high proportion of encephalopathic infants had evidence of major recent and evolving brain injury on early cUS imaging, suggesting prolonged or severe acute exposure to hypoxia-ischemia (HI). Early abnormalities were a significant predictor of death

    Search for time-dependent B0s - B0s-bar oscillations using a vertex charge dipole technique

    Get PDF
    We report a search for B0s - B0s-bar oscillations using a sample of 400,000 hadronic Z0 decays collected by the SLD experiment. The analysis takes advantage of the electron beam polarization as well as information from the hemisphere opposite that of the reconstructed B decay to tag the B production flavor. The excellent resolution provided by the pixel CCD vertex detector is exploited to cleanly reconstruct both B and cascade D decay vertices, and tag the B decay flavor from the charge difference between them. We exclude the following values of the B0s - B0s-bar oscillation frequency: Delta m_s < 4.9 ps-1 and 7.9 < Delta m_s < 10.3 ps-1 at the 95% confidence level.Comment: 18 pages, 3 figures, replaced by version accepted for publication in Phys.Rev.D; results differ slightly from first versio
    corecore