677 research outputs found

    Dynamical Dark Energy model parameters with or without massive neutrinos

    Full text link
    We use WMAP5 and other cosmological data to constrain model parameters in quintessence cosmologies, focusing also on their shift when we allow for non-vanishing neutrino masses. The Ratra-Peebles (RP) and SUGRA potentials are used here, as examples of slowly or fastly varying state parameter w(a). Both potentials depend on an energy scale \Lambda. Here we confirm the results of previous analysis with WMAP3 data on the upper limits on \Lambda, which turn out to be rather small (down to ~10^{-9} in RP cosmologies and ~10^{-5} for SUGRA). Our constraints on \Lambda are not heavily affected by the inclusion of neutrino mass as a free parameter. On the contrary, when the neutrino mass degree of freedom is opened, significant shifts in the best-fit values of other parameters occur.Comment: 9 pages, 3 figures, submitted to JCA

    Optimal low-thrust trajectories to asteroids through an algorithm based on differential dynamic programming

    Get PDF
    In this paper an optimisation algorithm based on Differential Dynamic Programming is applied to the design of rendezvous and fly-by trajectories to near Earth objects. Differential dynamic programming is a successive approximation technique that computes a feedback control law in correspondence of a fixed number of decision times. In this way the high dimensional problem characteristic of low-thrust optimisation is reduced into a series of small dimensional problems. The proposed method exploits the stage-wise approach to incorporate an adaptive refinement of the discretisation mesh within the optimisation process. A particular interpolation technique was used to preserve the feedback nature of the control law, thus improving robustness against some approximation errors introduced during the adaptation process. The algorithm implements global variations of the control law, which ensure a further increase in robustness. The results presented show how the proposed approach is capable of fully exploiting the multi-body dynamics of the problem; in fact, in one of the study cases, a fly-by of the Earth is scheduled, which was not included in the first guess solution

    A systematic cross-search for radio/infrared counterparts of XMM-Newton sources

    Full text link
    We present a catalog of cross-correlated radio, infrared and X-ray sources using a very restrictive selection criteria with an IDL-based code developed by us. The significance of the observed coincidences was evaluated through Monte Carlo simulations of synthetic sources following a well-tested protocol. We found 3320 coincident radio/X-ray sources with a high statistical significance characterized by the sum of error-weighted coordinate differences. For 997 of them, 2MASS counterparts were found. The percentage of chance coincidences is less than 1%. X-ray hardness ratios of well-known populations of objects were used to provide a crude representation of their X-ray spectrum and to make a preliminary diagnosis of the possible nature of unidentified X-ray sources. The results support the fact that the X-ray sky is largely dominated by Active Galactic Nuclei at high galactic latitudes (|b| >= 10^\circ). At low galactic latitudes (|b| <= 10^\circ) most of unidentified X-ray sources (~94%) lie at |b| <= 2^\circ. This result suggests that most of the unidentified sources found toward the Milky Way plane are galactic objects. Well-known and unidentified sources were classified in different tables with their corresponding radio/infrared and X-ray properties. These tables are intended as a useful tool for researchers interested in particular identifications.Comment: Accepted for publication in Ap&SS. 47 pages, 10 figures. On-line material: figures and table

    Ewald methods for polarizable surfaces with application to hydroxylation and hydrogen bonding on the (012) and (001) surfaces of alpha-Fe2O3

    Full text link
    We present a clear and rigorous derivation of the Ewald-like method for calculation of the electrostatic energy of the systems infinitely periodic in two-dimensions and of finite size in the third dimension (slabs) which is significantly faster than existing methods. Molecular dynamics simulations using the transferable/polarizable model by Rustad et al. were applied to study the surface relaxation of the nonhydroxylated, hydroxylated, and solvated surfaces of alpha-Fe2O3 (hematite). We find that our nonhydroxylated structures and energies are in good agreement with previous LDA calculations on alpha-alumina by Manassidis et al. [Surf. Sci. Lett. 285, L517, 1993]. Using the results of molecular dynamics simulations of solvated interfaces, we define end-member hydroxylated-hydrated states for the surfaces which are used in energy minimization calculations. We find that hydration has a small effect on the surface structure, but that hydroxylation has a significant effect. Our calculations, both for gas-phase and solution-phase adsorption, predict a greater amount of hydroxylation for the (012) surface than for the (001) surface. Our simulations also indicate the presence of four-fold coordinated iron ions on the (001) surface.Comment: 23 pages, REVTeX (LaTeX), 8 figures not included, e-mail to [email protected], paper accepted in Surface Scienc

    Observation of a Tricyclic[4.1.0.0 2,4]heptane During a Michael Addition-Ring Closure Reaction and a Computational Study on Its Mechanism of Formation

    Get PDF
    We describe the formation of a bis-cyclopropane product, a tricyclic[4.1.0.02,4]heptane, that is formed during a Johnson-Corey-Chaykovsky reaction on a cyclopentenone. Two (of four possible) bicyclic products are selectively formed by addition of a COOEt-stabilized sulfur ylide onto the Michael acceptor. The tricyclic product is formed subsequently via a retro Michael elimination of a hindered ether followed by addition of a further cyclopropyl moiety, affecting only one of the two bicyclic products initially formed. The experimental reaction outcome was rationalized using density functional theory (DFT), investigating the different Michael-addition approaches of the sulfur ylide, the transition state (TS) energies for the formation of possible zwitterionic intermediates and subsequent reactions that give rise to cyclopropanation. Selective formation of only two of the four possible products occurs due to the epimerization of unreactive intermediates from the other two pathways, as revealed by energy barrier calculations. The formation of the tricyclic product was rationalized by evaluation of energy barriers for proton abstraction required to form the intermediate undergoing the second cyclopropanation. The selectivity-guiding factors discussed for the single and double cyclopropanation of this functionalized Michael-acceptor will be useful guidelines for the synthesis of future singly and doubly cyclopropanated compounds

    Planck intermediate results. VIII. Filaments between interacting clusters

    Get PDF
    About half of the baryons of the Universe are expected to be in the form of filaments of hot and low density intergalactic medium. Most of these baryons remain undetected even by the most advanced X-ray observatories which are limited in sensitivity to the diffuse low density medium. The Planck satellite has provided hundreds of detections of the hot gas in clusters of galaxies via the thermal Sunyaev-Zel'dovich (tSZ) effect and is an ideal instrument for studying extended low density media through the tSZ effect. In this paper we use the Planck data to search for signatures of a fraction of these missing baryons between pairs of galaxy clusters. Cluster pairs are good candidates for searching for the hotter and denser phase of the intergalactic medium (which is more easily observed through the SZ effect). Using an X-ray catalogue of clusters and the Planck data, we select physical pairs of clusters as candidates. Using the Planck data we construct a local map of the tSZ effect centered on each pair of galaxy clusters. ROSAT data is used to construct X-ray maps of these pairs. After having modelled and subtracted the tSZ effect and X-ray emission for each cluster in the pair we study the residuals on both the SZ and X-ray maps. For the merging cluster pair A399-A401 we observe a significant tSZ effect signal in the intercluster region beyond the virial radii of the clusters. A joint X-ray SZ analysis allows us to constrain the temperature and density of this intercluster medium. We obtain a temperature of kT = 7.1 +- 0.9, keV (consistent with previous estimates) and a baryon density of (3.7 +- 0.2)x10^-4, cm^-3. The Planck satellite mission has provided the first SZ detection of the hot and diffuse intercluster gas.Comment: Accepted by A&

    Atmospheric effects on extensive air showers observed with the Surface Detector of the Pierre Auger Observatory

    Get PDF
    Atmospheric parameters, such as pressure (P), temperature (T) and density, affect the development of extensive air showers initiated by energetic cosmic rays. We have studied the impact of atmospheric variations on extensive air showers by means of the surface detector of the Pierre Auger Observatory. The rate of events shows a ~10% seasonal modulation and ~2% diurnal one. We find that the observed behaviour is explained by a model including the effects associated with the variations of pressure and density. The former affects the longitudinal development of air showers while the latter influences the Moliere radius and hence the lateral distribution of the shower particles. The model is validated with full simulations of extensive air showers using atmospheric profiles measured at the site of the Pierre Auger Observatory.Comment: 24 pages, 9 figures, accepted for publication in Astroparticle Physic

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results

    Update on the correlation of the highest energy cosmic rays with nearby extragalactic matter

    Get PDF
    Data collected by the Pierre Auger Observatory through 31 August 2007 showed evidence for anisotropy in the arrival directions of cosmic rays above the Greisen-Zatsepin-Kuz'min energy threshold, \nobreak{6×10196\times 10^{19}eV}. The anisotropy was measured by the fraction of arrival directions that are less than 3.13.1^\circ from the position of an active galactic nucleus within 75 Mpc (using the V\'eron-Cetty and V\'eron 12th12^{\rm th} catalog). An updated measurement of this fraction is reported here using the arrival directions of cosmic rays recorded above the same energy threshold through 31 December 2009. The number of arrival directions has increased from 27 to 69, allowing a more precise measurement. The correlating fraction is (386+7)(38^{+7}_{-6})%, compared with 2121% expected for isotropic cosmic rays. This is down from the early estimate of (6913+11)(69^{+11}_{-13})%. The enlarged set of arrival directions is examined also in relation to other populations of nearby extragalactic objects: galaxies in the 2 Microns All Sky Survey and active galactic nuclei detected in hard X-rays by the Swift Burst Alert Telescope. A celestial region around the position of the radiogalaxy Cen A has the largest excess of arrival directions relative to isotropic expectations. The 2-point autocorrelation function is shown for the enlarged set of arrival directions and compared to the isotropic expectation.Comment: Accepted for publication in Astroparticle Physics on 31 August 201
    corecore