359 research outputs found

    Silicon isotope and silicic acid uptake in surface waters of Marguerite Bay, West Antarctic Peninsula

    Get PDF
    The silicon isotope composition (ή30Si) of dissolved silicon (DSi) and biogenic silica (BSi) provides information about the silicon cycle and its role in oceanic carbon uptake in the modern ocean and in the past. However, there are still questions outstanding regarding the impact of processes such as oceanic mixing, export and dissolution on the isotopic signature of seawater, and the impacts on sedimentary BSi. This study reports the ή30Si of DSi from surface waters at the Rothera Time Series (RaTS) site, Ryder Bay, in a coastal region of the West Antarctic Peninsula (WAP). The samples were collected at the end of austral spring through the end of austral summer/beginning of autumn over two field seasons, 2004/5 and 2005/6. Broadly, for both field seasons, DSi diminished and ή30Si of DSi increased through the summer, but this was accomplished during only a few short periods of net nutrient drawdown. During these periods, the ή30Si of DSi was negatively correlated with DSi concentrations. The Si isotope fractionation factor determined for the net nutrient drawdown periods, ɛuptake, was in the range of -2.26 to -1.80‰ when calculated using an open system model and -1.93 to -1.33‰ when using a closed system model. These estimates of ɛ are somewhat higher than previous studies that relied on snapshots in time rather than following changes in ή30Si and DSi over time, which therefore were more likely to include the effects of mixing of dissolved silicon up into the mixed layer. Results highlight also that, even at the same station and within a single growing season, the apparent fractionation factor may exhibit significant temporal variability because of changes in the extent of biological removal of DSi, nutrient source, siliceous species, and mixing events. Paleoceanographic studies using silicon isotopes need careful consideration in the light of our new results

    Copepods Boost the Production but Reduce the Carbon Export Efficiency by Diatoms

    Get PDF
    The fraction of net primary production that is exported from the euphotic zone as sinking particulate organic carbon (POC) varies notably through time and from region to region. Phytoplankton containing biominerals, such as silicified diatoms have long been associated with high export fluxes. However, recent reviews point out that the magnitude of export is not controlled by diatoms alone, but determined by the whole plankton community structure. The combined effect of phytoplankton community composition and zooplankton abundance on export flux dynamics, were explored using a set of 12 large outdoor mesocosms. All mesocosms received a daily addition of minor amounts of nitrate and phosphate, while only 6 mesocosms received silicic acid (dSi). This resulted in a dominance of diatoms and dinoflagellate in the +Si mesocosms and a dominance of dinoflagellate in the -Si mesocosms. Simultaneously, half of the mesocosms had decreased mesozooplankton populations whereas the other half were supplemented with additional zooplankton. In all mesocosms, POC fluxes were positively correlated to Si/C ratios measured in the surface community and additions of dSi globally increased the export fluxes in all treatments highlighting the role of diatoms in C export. The presence of additional copepods resulted in higher standing stocks of POC, most probably through trophic cascades. However it only resulted in higher export fluxes for the +Si mesocosms. In the +Si with copepod addition (+Si +Cops) export was dominated by large diatoms with higher Si/C ratios in sinking material than in standing stocks. During non-bloom situations, the grazing activity of copepods decrease the export efficiency in diatom dominated systems by changing the structure of the phytoplankton community and/or preventing their aggregation. However, in flagellate-dominated system, the copepods increased phytoplankton growth, aggregation and fecal pellet production, with overall higher net export not always visible in term of export efficiency

    Large-scale unit commitment under uncertainty: an updated literature survey

    Get PDF
    The Unit Commitment problem in energy management aims at finding the optimal production schedule of a set of generation units, while meeting various system-wide constraints. It has always been a large-scale, non-convex, difficult problem, especially in view of the fact that, due to operational requirements, it has to be solved in an unreasonably small time for its size. Recently, growing renewable energy shares have strongly increased the level of uncertainty in the system, making the (ideal) Unit Commitment model a large-scale, non-convex and uncertain (stochastic, robust, chance-constrained) program. We provide a survey of the literature on methods for the Uncertain Unit Commitment problem, in all its variants. We start with a review of the main contributions on solution methods for the deterministic versions of the problem, focussing on those based on mathematical programming techniques that are more relevant for the uncertain versions of the problem. We then present and categorize the approaches to the latter, while providing entry points to the relevant literature on optimization under uncertainty. This is an updated version of the paper "Large-scale Unit Commitment under uncertainty: a literature survey" that appeared in 4OR 13(2), 115--171 (2015); this version has over 170 more citations, most of which appeared in the last three years, proving how fast the literature on uncertain Unit Commitment evolves, and therefore the interest in this subject

    An original phylogenetic approach identified mitochondrial haplogroup T1a1 as inversely associated with breast cancer risk in BRCA2 mutation carriers

    Get PDF
    Introduction: Individuals carrying pathogenic mutations in the BRCA1 and BRCA2 genes have a high lifetime risk of breast cancer. BRCA1 and BRCA2 are involved in DNA double-strand break repair, DNA alterations that can be caused by exposure to reactive oxygen species, a main source of which are mitochondria. Mitochondrial genome variations affect electron transport chain efficiency and reactive oxygen species production. Individuals with different mitochondrial haplogroups differ in their metabolism and sensitivity to oxidative stress. Variability in mitochondrial genetic background can alter reactive oxygen species production, leading to cancer risk. In the present study, we tested the hypothesis that mitochondrial haplogroups modify breast cancer risk in BRCA1/2 mutation carriers. Methods: We genotyped 22,214 (11,421 affected, 10,793 unaffected) mutation carriers belonging to the Consortium of Investigators of Modifiers of BRCA1/2 for 129 mitochondrial polymorphisms using the iCOGS array. Haplogroup inference and association detection were performed using a phylogenetic approach. ALTree was applied to explore the reference mitochondrial evolutionary tree and detect subclades enriched in affected or unaffected individuals. Results: We discovered that subclade T1a1 was depleted in affected BRCA2 mutation carriers compared with the rest of clade T (hazard ratio (HR) = 0.55; 95% confidence interval (CI), 0.34 to 0.88; P = 0.01). Compared with the most frequent haplogroup in the general population (that is, H and T clades), the T1a1 haplogroup has a HR of 0.62 (95% CI, 0.40 to 0.95; P = 0.03). We also identified three potential susceptibility loci, including G13708A/rs28359178, which has demonstrated an inverse association with familial breast cancer risk. Conclusions: This study illustrates how original approaches such as the phylogeny-based method we used can empower classical molecular epidemiological studies aimed at identifying association or risk modification effects.Peer reviewe

    Centrality evolution of the charged-particle pseudorapidity density over a broad pseudorapidity range in Pb-Pb collisions at root s(NN)=2.76TeV

    Get PDF
    Peer reviewe

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Biogeochemistry measurements in a mesocosm experiment in the Bay of Hopavagen, Norway, in August 2012

    No full text
    The goal of this work has been to examine the influence of upper ocean food web structure and functioning on both the natural and artificially enhanced sequestration of carbon within the ocean. Data obtained in the mesocosm experiment run in the Bay of HopavÄgen in August 2012 are used to assess the extent to which organic matter produced within four different food webs is retained in the upper ocean food web versus remineralized back to carbon dioxide and inorganic nutrients (ammonium, dissolved silicon, phosphate) versus exported from the system in the form of rapidly sinking particles. The experiment was carried out in a set of 12 mesocosms covering, in triplicate, 2 different phytoplankton communities (diatom versus non-diatom) exposed to 2 different zooplankton communities (-copepod and +copepod). These starting conditions were established by first filling the bags, roughly simultaneously, with seawater from the Bay of HopavÄgen. Mesozooplankton were then removed to the most complete extent possible immediately removed from half of the mesocosms through repeated vertical hauls of a plankton net (200 ”m mesh). Nitrate and phosphate was added to half mesocosms daily to promote the growth of non-siliceous phytoplankton (e.g. dinoflagellates or coccolithophores). To the other half of the mesocosms, nitrate, phosphate, and silicate were added to promote the growth of diatoms. Material was allowed to settle and the two distinct phytoplankton populations were allowed to develop for 4 days, after which copepods collected from the Bay of HopavÄgen were added back to the half of the N+P mesocosms and to the half of the N+P+Si mesocosms from which mesozooplankton had not been removed at the beginning. This yielded a set of four initial starting conditions (N+P-copepods, N+P+copepods, N+P+Si-copepods, and N+P+Si+copepods). In the primary mesocosms, samples for a set of core parameters were taken every time the mesocosms were sampled. Samples for particulates (PIC, BSi, POC, PON) were collected on GF/F or 0.4 ”m polycarbonate

    (Table 2) Silicon isotope data for sponge spicules from ODP Hole 113-689B

    No full text
    The silicon isotope composition (d30Si) of biogenic opal provides a view of the silica cycle at times in the past. Reconstructions require the knowledge of silicon isotope fractionation during opal biomineralization. The d30Si of specimens of hexactinellid sponges and demosponges growing in the modern ocean ranged from -1.2 per mil to -3.7 per mil (n = 6), corresponding to the production of opal that has a d30Si value 3.8 per mil +/- 0.8 per mil more negative than seawater silicic acid and a fractionation factor (a) of 0.9964. This is three times the fractionation observed during opal formation by marine diatoms and terrestrial plants and is the largest fractionation of silicon isotopes observed for any natural process on Earth. The d30Si values of sponge spicules across the Eocene-Oligocene boundary at Ocean Drilling Program Site 689 on Maud Rise range from -1.1 per mil to -3.0 per mil, overlapping the range observed for sponges growing in modern seawater

    Factors influencing the sinking of POC and the efficiency of the biological carbon pump

    Get PDF
    International audienceBy altering the number, size, and density of particles in the ocean, the activities of different phytoplankton, zooplankton, and microbial species control the formation, degradation, fragmentation, and repackaging of rapidly sinking aggregates of particulate organic carbon (POC) and are responsible for much of the variation in the efficiency of the biological carbon pump. A more systematic understanding of these processes will allow the biological pump to be included in global models as more than an empirically-determined decline in POC concentrations with depth that may not adequately represent past or future conditions. Although progress has been made on this front, key areas needing work are the amount of POC flux associated with appendicularians, the mechanisms by which coccoliths and coccolithophorid POC reach depth, and the impact of polymers such as TEP on the porosity of aggregates. In addition, an understanding of the interaction between biological and physical aspects of the pump, such as aggregate loading with suspended mineral particles, is also important for understanding the transmission of biogenic materials through the meso- and bathypelagic realms. Data suggest that variable biogenic silica to POC production ratios in various ocean regions are responsible for the poor correlation observed between silica and POC in deep sediment traps, and that high concentrations of suspended coccoliths in deep waters may be responsible for the homogeneous calcium carbonate to POC ratios observed in these same traps. Sedimentation of foraminiferal calcite does not appear to be as tightly correlated to POC flux as coccolith sedimentation. Suspended calcium carbonate particles, scavenged by sinking organic aggregates, have been observed to both fragment and increase the density of these aggregates. Analysis of the data suggests that scavenging of minerals by aggregates decreases the porosity of the aggregates and may increase their sinking velocities by hundreds of times
    • 

    corecore