625 research outputs found

    Optimal logistics scheduling with dynamic information in emergency response: case studies for humanitarian objectives

    Get PDF
    The mathematical model of infectious disease is a typical problem in mathematical modeling, and the common infectious disease models include the susceptible-infected (SI) model, the susceptible-infected-recovered model (SIR), the susceptible-infected-recovered-susceptible model (SIRS) and the susceptible-exposed-infected-recovered (SEIR) model. These models can be used to predict the impact of regional return to work after the epidemic. In this paper, we use the SEIR model to solve the dynamic medicine demand information in humanitarian relief phase. A multistage mixed integer programming model for the humanitarian logistics and transport resource is proposed. The objective functions of the model include delay cost and minimum running time in the time-space network. The model describes that how to distribute and deliver medicine resources from supply locations to demand locations with an efficient and lower-cost way through a transportation network. The linear programming problem is solved by the proposed Benders decomposition algorithm. Finally, we use two cases to calculate model and algorithm. The results of the case prove the validity of the model and algorithm

    Responses of two field-grown coffee species to drought and re-hydration

    Get PDF
    The gas exchange, parameters of chlorophyll fluorescence, contents of pigments, and activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), as well as lipid peroxidation were investigated in two field-grown coffee species, Coffea arabica and C. liberica, exposed to drought and re-hydration. Drought caused a more pronounced inhibition of net photosynthetic rate in C. liberica compared to C. arabica. The de-epoxidation of xanthophyll cycle pigments at midday estimated by leaf reflectance was much higher in C. arabica than in C. liberica, but no significant change was found in response to drought. Under moderate drought, the activities of SOD and APX increased significantly only in C. arabica. The maximum photochemical efficiency of photosystem 2, PS2 (Fv/Fm) at predawn did not change and there was no lipid peroxidation during this time. Under severe drought Fv/Fm decreased and initial fluorescence (F0) increased for both species, and SOD activity increased, APX activity remained relatively high, and malondialdehyde (MDA) accumulated in C. arabica, while APX decreased in C. liberica. The photosynthetic apparatus of C. arabica was completely recovered after 5 d of re-irrigation as indicated by the restoration of Fv/Fm to the control values. A lack of recovery upon rewatering of C. liberica indicated irreversible damage to PS2. Hence compared to C. liberica, C. arabica possesses a higher desiccation-induced antioxidative protection and higher portion of the total pigment pool used in photoprotection, which might aid alleviating photoinhibitory damage during desiccation and photosynthesis recovery when favourable conditions are restore

    Influence of intensive melt shearing on the microstructure and mechanical properties of an Al-Mg alloy with high added impurity content

    Get PDF
    The official published version can be accessed from the link below - Copyright @ The Minerals, Metals & Materials Society and ASM International 2011We have investigated the influence of melt conditioning by intensive shearing on the mechanical behavior and microstructure of Al-Mg-Mn-Fe-Cu-Si alloy sheet produced from a small book mold ingot with high added impurity content. The melt conditioned ingot has fine grains throughout its cross section, whereas a conventionally cast ingot, without melt shearing, has coarser grains and shows a wider variation of grain size. Both needle-shaped and coarse Chinese script iron bearing intermetallic particles are found in the microstructure at the center of the conventionally processed ingot, but for the melt conditioned ingot, only fine Chinese script intermetallic particles are observed. In addition to the iron bearing intermetallics, Mg2Si particles are also observed. The ingots were rolled to thin sheet and solution heat treated (SHT). During rolling, the iron-based intermetallics and Mg2Si particles are broken and aligned along the rolling direction. Yield strength (YS), ultimate tensile strength (UTS), and elongation of the intensively melt sheared and processed sheet are all improved compared to the conventionally cast and processed sheet. Fractographic analysis of the tensile fracture surfaces shows that the clustered and coarse iron bearing intermetallic particles are responsible for the observed reduction in mechanical properties of the conventionally cast sheet. We have shown that by refining the initial microstructure of the ingot by intensive shear melt conditioning, it is possible to achieve improved mechanical properties at the final sheet gage of an AlMgMn alloy with a high content of impurities.This study is under the Technology Strategy Board funded REALCAR projec

    Self-nanomicellizing solid dispersion of edaravone: part II: in vivo assessment of efficacy against behavior deficits and safety in Alzheimer’s disease model

    Get PDF
    Background: Alzheimer’s disease (AD) is a devastating neurodegenerative disorder that lacks any disease-modifying drug for the prevention and treatment. Edaravone (EDR), an approved free radical scavenger, has proven to have potential against AD by targeting multiple key pathologies including amyloid-beta (Aβ), tau phosphorylation, oxidative stress, and neuroinflammation. To enable its oral use, novel edaravone formulation (NEF) was previously developed. The aim of the present investigation was to evaluate safety and efficacy of NEF by using in vitro/in vivo disease model. Materials and methods: In vitro therapeutic potential of NEF over EDR was studied against the cytotoxicity induced by copper metal ion, H₂O₂ and Aβ42 oligomer, and cellular uptake on SH-SY5Y695 amyloid-β precursor protein (APP) human neuroblastoma cell line. For in vivo safety and efficacy assessment, totally seven groups of APP/PS1 (five treatment groups, one each as a basal and sham control) and one group of C57BL/6 mice as a positive control for behavior tests were used. Three groups were orally treated for 3 months with NEF at an equivalent dose of EDR 46, 138, and 414 μmol/kg, whereas one group was supplied with each Donepezil (5.27 μM/kg) and Soluplus (amount present in NEF of 414 μmol/kg dose of EDR). Behavior tests were conducted to assess motor function (open-field), anxiety-related behavior (open-field), and cognitive function (novel objective recognition test, Y-maze, and Morris water maze). For the safety assessment, general behavior, adverse effects, and mortality were recorded during the treatment period. Moreover, biochemical, hematological, and morphological parameters were determined. Results: Compared to EDR, NEF showed superior cellular uptake and neuroprotective effect in SH-SY5Y695 APP cell line. Furthermore, it showed nontoxicity of NEF up to 414 μM/kg dose of EDR and its potential to reverse AD-like behavior deficits of APP/PS1 mice in a dose-dependent manner. Conclusion: Our results indicate that oral delivery of NEF holds a promise as a safe and effective therapeutic agent for AD.Ankit Parikh, Krishna Kathawala, Jintao Li, Chi Chen, Zhengnan Shan, Xia Cao, Yan-Jiang Wang, Sanjay Garg, Xin-Fu Zho

    Semileptonic BcB_c decays and Charmonium distribution amplitude

    Get PDF
    In this paper we study the semileptonic decays of the BcB_c meson in the Light-Cone Sum Rule (LCSR) approach. The result for each channel depends on the corresponding distribution amplitude of the final meson. For the case of BcB_c decaying into a pseudoscalar meson, to twist-3 accuracy only the leading twist distribution amplitude (DA) is involved if we start from a chiral current. If we choose a suitable chiral current in the vector meson case, the main twist-3 contributions are also eliminated and we can consider the leading twist contribution only. The leading twist distribution amplitudes of the charmonium and other heavy mesons are given by a model approach in the reasonable way. Employing this charmonium distribution amplitude we find the cross section σ(e+eJ/ψ+ηc)22.8fb\sigma(e^+e^-\to J/\psi+\eta_c)\simeq22.8 {fb} which is consistent with Belle and BaBar's data. Based on this model, we calculate the form factors for various BcB_c decay modes in the corresponding regions. Extrapolating the form factors to the whole kinetic regions, we get the decay widths and branching ratios for various BcB_c decay modes including their τ\tau modes when they are kinematically accessible.Comment: Changed content partially, Added references, 16 pages,2 figure

    Search for a W' boson decaying to a bottom quark and a top quark in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    Results are presented from a search for a W' boson using a dataset corresponding to 5.0 inverse femtobarns of integrated luminosity collected during 2011 by the CMS experiment at the LHC in pp collisions at sqrt(s)=7 TeV. The W' boson is modeled as a heavy W boson, but different scenarios for the couplings to fermions are considered, involving both left-handed and right-handed chiral projections of the fermions, as well as an arbitrary mixture of the two. The search is performed in the decay channel W' to t b, leading to a final state signature with a single lepton (e, mu), missing transverse energy, and jets, at least one of which is tagged as a b-jet. A W' boson that couples to fermions with the same coupling constant as the W, but to the right-handed rather than left-handed chiral projections, is excluded for masses below 1.85 TeV at the 95% confidence level. For the first time using LHC data, constraints on the W' gauge coupling for a set of left- and right-handed coupling combinations have been placed. These results represent a significant improvement over previously published limits.Comment: Submitted to Physics Letters B. Replaced with version publishe

    Search for strong gravity in multijet final states produced in pp collisions at √s=13 TeV using the ATLAS detector at the LHC

    Get PDF
    A search is conducted for new physics in multijet final states using 3.6 inverse femtobarns of data from proton-proton collisions at √s = 13TeV taken at the CERN Large Hadron Collider with the ATLAS detector. Events are selected containing at least three jets with scalar sum of jet transverse momenta (HT) greater than 1TeV. No excess is seen at large HT and limits are presented on new physics: models which produce final states containing at least three jets and having cross sections larger than 1.6 fb with HT > 5.8 TeV are excluded. Limits are also given in terms of new physics models of strong gravity that hypothesize additional space-time dimensions

    Operation and performance of the ATLAS semiconductor tracker

    Get PDF
    The semiconductor tracker is a silicon microstrip detector forming part of the inner tracking system of the ATLAS experiment at the LHC. The operation and performance of the semiconductor tracker during the first years of LHC running are described. More than 99% of the detector modules were operational during this period, with an average intrinsic hit efficiency of (99.74±0.04)%. The evolution of the noise occupancy is discussed, and measurements of the Lorentz angle, δ-ray production and energy loss presented. The alignment of the detector is found to be stable at the few-micron level over long periods of time. Radiation damage measurements, which include the evolution of detector leakage currents, are found to be consistent with predictions and are used in the verification of radiation background simulations
    corecore