411 research outputs found

    A Simple Artificial Life Model Explains Irrational Behavior in Human Decision-Making

    Get PDF
    Although praised for their rationality, humans often make poor decisions, even in simple situations. In the repeated binary choice experiment, an individual has to choose repeatedly between the same two alternatives, where a reward is assigned to one of them with fixed probability. The optimal strategy is to perseverate with choosing the alternative with the best expected return. Whereas many species perseverate, humans tend to match the frequencies of their choices to the frequencies of the alternatives, a sub-optimal strategy known as probability matching. Our goal was to find the primary cognitive constraints under which a set of simple evolutionary rules can lead to such contrasting behaviors. We simulated the evolution of artificial populations, wherein the fitness of each animat (artificial animal) depended on its ability to predict the next element of a sequence made up of a repeating binary string of varying size. When the string was short relative to the animats’ neural capacity, they could learn it and correctly predict the next element of the sequence. When it was long, they could not learn it, turning to the next best option: to perseverate. Animats from the last generation then performed the task of predicting the next element of a non-periodical binary sequence. We found that, whereas animats with smaller neural capacity kept perseverating with the best alternative as before, animats with larger neural capacity, which had previously been able to learn the pattern of repeating strings, adopted probability matching, being outperformed by the perseverating animats. Our results demonstrate how the ability to make predictions in an environment endowed with regular patterns may lead to probability matching under less structured conditions. They point to probability matching as a likely by-product of adaptive cognitive strategies that were crucial in human evolution, but may lead to sub-optimal performances in other environments

    Whole-genome phylogenies of the family Bacillaceae and expansion of the sigma factor gene family in the Bacillus cereus species-group

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The <it>Bacillus cereus </it><it>sensu lato </it>group consists of six species (<it>B. anthracis</it>, <it>B. cereus</it>, <it>B. mycoides</it>, <it>B. pseudomycoides</it>, <it>B. thuringiensis</it>, and <it>B. weihenstephanensis</it>). While classical microbial taxonomy proposed these organisms as distinct species, newer molecular phylogenies and comparative genome sequencing suggests that these organisms should be classified as a single species (thus, we will refer to these organisms collectively as the <it>Bc </it>species-group). How do we account for the underlying similarity of these phenotypically diverse microbes? It has been established for some time that the most rapidly evolving and evolutionarily flexible portions of the bacterial genome are regulatory sequences and transcriptional networks. Other studies have suggested that the sigma factor gene family of these organisms has diverged and expanded significantly relative to their ancestors; sigma factors are those portions of the bacterial transcriptional apparatus that control RNA polymerase recognition for promoter selection. Thus, examining sigma factor divergence in these organisms would concurrently examine both regulatory sequences and transcriptional networks important for divergence. We began this examination by comparison to the sigma factor gene set of <it>B. subtilis</it>.</p> <p>Results</p> <p>Phylogenetic analysis of the <it>Bc </it>species-group utilizing 157 single-copy genes of the family <it>Bacillaceae </it>suggests that several taxonomic revisions of the genus <it>Bacillus </it>should be considered. Within the <it>Bc </it>species-group there is little indication that the currently recognized species form related sub-groupings, suggesting that they are members of the same species. The sigma factor gene family encoded by the <it>Bc </it>species-group appears to be the result of a dynamic gene-duplication and gene-loss process that in previous analyses underestimated the true heterogeneity of the sigma factor content in the <it>Bc </it>species-group.</p> <p>Conclusions</p> <p>Expansion of the sigma factor gene family appears to have preferentially occurred within the extracytoplasmic function (ECF) sigma factor genes, while the primary alternative (PA) sigma factor genes are, in general, highly conserved with those found in <it>B. subtilis</it>. Divergence of the sigma-controlled transcriptional regulons among various members of the <it>Bc </it>species-group likely has a major role in explaining the diversity of phenotypic characteristics seen in members of the <it>Bc </it>species-group.</p

    Vitamin status and cognitive function in a long-term care population

    Get PDF
    BACKGROUND: Ageing can be associated with poor dietary intake, reduced nutrient absorption, and less efficient utilization of nutrients. Loss of memory and related cognitive function are also common among older persons. This study aimed to measure the prevalence of inadequate vitamin status among long-term care patients and determine if an association exists between vitamin status and each of three variables; cognitive function, vitamin supplementation, and medications which alter gastric acid levels. METHODS: Seventy-five patients in a long-term care hospital in Guelph, Ontario were recruited to a cross-sectional study. 47 were female and the mean age was 80.7 (+/-11.5) years, ranging from 48 to 100 years. Blood was used to measure levels of vitamins B12 (cobalamin), B6 (pyridoxal-5'-phosphate/PLP), erythrocyte folate, vitamin B3 (niacin) and homocysteine (Hcy). The Standardized Mini-Mental State Examination (SMMSE) was administered to measure cognitive function. A list of medications and vitamin supplementation for each patient was provided by the pharmacy. RESULTS: The prevalence of low vitamin (B12, B6, erythrocyte folate, niacin) or high metabolite (homocysteine) levels among 75 patients were as follows: B12 <148 pmol/L in 5/75 (6.7%); B12 between 148 and 221 pmol/L in 26/75 (34.7%); B6 ≤30 nmol/L in 4/75 (5.3%); erythrocyte folate <370 nmol/L in 1/75 (1.3%); niacin ratio ≤1 in 20/75 (26.7%); homocysteine >13.3 μmol/L in 31/75 (41.3%). There was no significant difference among residents grouped into marked (n = 44), mild (n = 14), or normal (n = 9) cognitive function when evaluating the effect of vitamin status. There were no significant differences in mean B12 and homocysteine levels between users and non-users of drug therapy (Losec, Zantac, or Axid). Compared to vitamin supplement non-users, supplemented residents had significantly higher mean B12 (p < 0.0001) and erythrocyte folate (p < 0.05) concentrations and significantly lower mean homocysteine (p < 0.01) levels; 229.1 versus 423.6 pmol/L for B12, 882.9 versus 1043.6 nmol/L for erythrocyte folate and 14.4 versus 12.0 μmol/L for homocysteine. CONCLUSION: Given the prevalence data on vitamin status in this sample population, the possible benefits of vitamin supplementation should be considered in clinical intervention studies using these populations of elderly

    The role of facemasks and hand hygiene in the prevention of influenza transmission in households: results from a cluster randomised trial; Berlin, Germany, 2009-2011

    Get PDF
    Background: Previous controlled studies on the effect of non-pharmaceutical interventions (NPI) - namely the use of facemasks and intensified hand hygiene - in preventing household transmission of influenza have not produced definitive results. We aimed to investigate efficacy, acceptability, and tolerability of NPI in households with influenza index patients. Methods: We conducted a cluster randomized controlled trial during the pandemic season 2009/10 and the ensuing influenza season 2010/11. We included households with an influenza positive index case in the absence of further respiratory illness within the preceding 14 days. Study arms were wearing a facemask and practicing intensified hand hygiene (MH group), wearing facemasks only (M group) and none of the two (control group). Main outcome measure was laboratory confirmed influenza infection in a household contact. We used daily questionnaires to examine adherence and tolerability of the interventions. Results: We recruited 84 households (30 control, 26 M and 28 MH households) with 82, 69 and 67 household contacts, respectively. In 2009/10 all 41 index cases had a influenza A (H1N1) pdm09 infection, in 2010/11 24 had an A (H1N1) pdm09 and 20 had a B infection. The total secondary attack rate was 16% (35/218). In intention-totreat analysis there was no statistically significant effect of the M and MH interventions on secondary infections. When analysing only households where intervention was implemented within 36 h after symptom onset of the index case, secondary infection in the pooled M and MH groups was significantly lower compared to the control group (adjusted odds ratio 0.16, 95% CI, 0.03-0.92). In a per-protocol analysis odds ratios were significantly reduced among participants of the M group (adjusted odds ratio, 0.30, 95% CI, 0.10-0.94). With the exception of MH index cases in 2010/11 adherence was good for adults and children, contacts and index cases. Conclusions: Results suggest that household transmission of influenza can be reduced by the use of NPI, such as facemasks and intensified hand hygiene, when implemented early and used diligently. Concerns about acceptability and tolerability of the interventions should not be a reason against their recommendation

    Hydrogen Peroxide Probes Directed to Different Cellular Compartments

    Get PDF
    Background: Controlled generation and removal of hydrogen peroxide play important roles in cellular redox homeostasis and signaling. We used a hydrogen peroxide biosensor HyPer, targeted to different compartments, to examine these processes in mammalian cells. Principal Findings: Reversible responses were observed to various redox perturbations and signaling events. HyPer expressed in HEK 293 cells was found to sense low micromolar levels of hydrogen peroxide. When targeted to various cellular compartments, HyPer occurred in the reduced state in the nucleus, cytosol, peroxisomes, mitochondrial intermembrane space and mitochondrial matrix, but low levels of the oxidized form of the biosensor were also observed in each of these compartments, consistent with a low peroxide tone in mammalian cells. In contrast, HyPer was mostly oxidized in the endoplasmic reticulum. Using this system, we characterized control of hydrogen peroxide in various cell systems, such as cells deficient in thioredoxin reductase, sulfhydryl oxidases or subjected to selenium deficiency. Generation of hydrogen peroxide could also be monitored in various compartments following signaling events. Conclusions: We found that HyPer can be used as a valuable tool to monitor hydrogen peroxide generated in different cellular compartments. The data also show that hydrogen peroxide generated in one compartment could translocate to other compartments. Our data provide information on compartmentalization, dynamics and homeostatic control of hydrogen peroxide in mammalian cells

    Variations in corticosteroid/anesthetic injections for painful shoulder conditions: comparisons among orthopaedic surgeons, rheumatologists, and physical medicine and primary-care physicians

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Variations in corticosteroid/anesthetic doses for injecting shoulder conditions were examined among orthopaedic surgeons, rheumatologists, and primary-care sports medicine (PCSMs) and physical medicine and rehabilitation (PMRs) physicians to provide data needed for documenting inter-group differences for establishing uniform injection guidelines.</p> <p>Methods</p> <p>264 surveys, sent to these physicians in our tri-state area of the western United States, addressed corticosteroid/anesthetic doses and types used for subacromial impingement, degenerative glenohumeral and acromioclavicular arthritis, biceps tendinitis, and peri-scapular trigger points. They were asked about preferences regarding: 1) fluorinated vs. non-fluorinated corticosteroids, 2) acetate vs. phosphate types, 3) patient age, and 4) adjustments for special considerations including young athletes and diabetics.</p> <p>Results</p> <p>169 (64% response rate, RR) surveys were returned: 105/163 orthopaedic surgeons (64%RR), 44/77 PCSMs/PMRs (57%RR), 20/24 rheumatologists (83%RR). Although corticosteroid doses do not differ significantly between specialties (p > 0.3), anesthetic volumes show broad variations, with surgeons using larger volumes. Although 29% of PCSMs/PMRs, 44% rheumatologists, and 41% surgeons exceed "recommended" doses for the acromioclavicular joint, >98% were within recommendations for the subacromial bursa and glenohumeral joint. Depo-Medrol<sup>® </sup>(methylprednisolone acetate) and Kenalog<sup>® </sup>(triamcinolone acetonide) are most commonly used. More rheumatologists (80%) were aware that there are acetate and phosphate types of corticosteroids as compared to PCSMs/PMRs (76%) and orthopaedists (60%). However, relatively fewer rheumatologists (25%) than PCSMs/PMRs (32%) or orthopaedists (32%) knew that phosphate types are more soluble. Fluorinated corticosteroids, which can be deleterious to soft tissues, were used with these frequencies for the biceps sheath: 17% rheumatologists, 8% PCSMs/PMRs, 37% orthopaedists. Nearly 85% use the same non-fluorinated corticosteroid for all injections; <10% make adjustments for diabetic patients.</p> <p>Conclusion</p> <p>Variations between specialists in anesthetic doses suggest that surgeons (who use significantly larger volumes) emphasize determining the percentage of pain attributable to the injected region. Alternatively, this might reflect a more profound knowledge that non-surgeons specialists have of the potentially adverse cardiovascular effects of these agents. Variations between these specialists in corticosteroid/anesthetic doses and/or types, and their use in some special situations (e.g., diabetics), bespeak the need for additional investigations aimed at establishing uniform injection guidelines, and for identifying knowledge deficiencies that warrant advanced education.</p

    Genetic Analysis of Genome-Scale Recombination Rate Evolution in House Mice

    Get PDF
    The rate of meiotic recombination varies markedly between species and among individuals. Classical genetic experiments demonstrated a heritable component to population variation in recombination rate, and specific sequence variants that contribute to recombination rate differences between individuals have recently been identified. Despite these advances, the genetic basis of species divergence in recombination rate remains unexplored. Using a cytological assay that allows direct in situ imaging of recombination events in spermatocytes, we report a large (∼30%) difference in global recombination rate between males of two closely related house mouse subspecies (Mus musculus musculus and M. m. castaneus). To characterize the genetic basis of this recombination rate divergence, we generated an F2 panel of inter-subspecific hybrid males (n = 276) from an intercross between wild-derived inbred strains CAST/EiJ (M. m. castaneus) and PWD/PhJ (M. m. musculus). We uncover considerable heritable variation for recombination rate among males from this mapping population. Much of the F2 variance for recombination rate and a substantial portion of the difference in recombination rate between the parental strains is explained by eight moderate- to large-effect quantitative trait loci, including two transgressive loci on the X chromosome. In contrast to the rapid evolution observed in males, female CAST/EiJ and PWD/PhJ animals show minimal divergence in recombination rate (∼5%). The existence of loci on the X chromosome suggests a genetic mechanism to explain this male-biased evolution. Our results provide an initial map of the genetic changes underlying subspecies differences in genome-scale recombination rate and underscore the power of the house mouse system for understanding the evolution of this trait

    Budding Yeast Dma Proteins Control Septin Dynamics and the Spindle Position Checkpoint by Promoting the Recruitment of the Elm1 Kinase to the Bud Neck

    Get PDF
    The first step towards cytokinesis in budding yeast is the assembly of a septin ring at the future site of bud emergence. Integrity of this ring is crucial for cytokinesis, proper spindle positioning, and the spindle position checkpoint (SPOC). This checkpoint delays mitotic exit and cytokinesis as long as the anaphase spindle does not properly align with the division axis. SPOC signalling requires the Kin4 protein kinase and the Kin4-regulating Elm1 kinase, which also controls septin dynamics. Here, we show that the two redundant ubiquitin-ligases Dma1 and Dma2 control septin dynamics and the SPOC by promoting the efficient recruitment of Elm1 to the bud neck. Indeed, dma1 dma2 mutant cells show reduced levels of Elm1 at the bud neck and Elm1-dependent activation of Kin4. Artificial recruitment of Elm1 to the bud neck of the same cells is sufficient to re-establish a normal septin ring, proper spindle positioning, and a proficient SPOC response in dma1 dma2 cells. Altogether, our data indicate that septin dynamics and SPOC function are intimately linked and support the idea that integrity of the bud neck is crucial for SPOC signalling

    Towards a Processual Microbial Ontology

    Get PDF
    types: ArticleStandard microbial evolutionary ontology is organized according to a nested hierarchy of entities at various levels of biological organization. It typically detects and defines these entities in relation to the most stable aspects of evolutionary processes, by identifying lineages evolving by a process of vertical inheritance from an ancestral entity. However, recent advances in microbiology indicate that such an ontology has important limitations. The various dynamics detected within microbiological systems reveal that a focus on the most stable entities (or features of entities) over time inevitably underestimates the extent and nature of microbial diversity. These dynamics are not the outcome of the process of vertical descent alone. Other processes, often involving causal interactions between entities from distinct levels of biological organisation, or operating at different time scales, are responsible not only for the destabilisation of pre-existing entities, but also for the emergence and stabilisation of novel entities in the microbial world. In this article we consider microbial entities as more or less stabilised functional wholes, and sketch a network-based ontology that can represent a diverse set of processes including, for example, as well as phylogenetic relations, interactions that stabilise or destabilise the interacting entities, spatial relations, ecological connections, and genetic exchanges. We use this pluralistic framework for evaluating (i) the existing ontological assumptions in evolution (e.g. whether currently recognized entities are adequate for understanding the causes of change and stabilisation in the microbial world), and (ii) for identifying hidden ontological kinds, essentially invisible from within a more limited perspective. We propose to recognize additional classes of entities that provide new insights into the structure of the microbial world, namely ‘‘processually equivalent’’ entities, ‘‘processually versatile’’ entities, and ‘‘stabilized’’ entities.Economic and Social Research Council, U
    • …
    corecore