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Abstract Standard microbial evolutionary ontology is organized according to a

nested hierarchy of entities at various levels of biological organization. It typically

detects and defines these entities in relation to the most stable aspects of evolu-

tionary processes, by identifying lineages evolving by a process of vertical inheri-

tance from an ancestral entity. However, recent advances in microbiology indicate

that such an ontology has important limitations. The various dynamics detected

within microbiological systems reveal that a focus on the most stable entities (or

features of entities) over time inevitably underestimates the extent and nature of

microbial diversity. These dynamics are not the outcome of the process of vertical

descent alone. Other processes, often involving causal interactions between entities

from distinct levels of biological organisation, or operating at different time scales,

are responsible not only for the destabilisation of pre-existing entities, but also for

the emergence and stabilisation of novel entities in the microbial world. In this

article we consider microbial entities as more or less stabilised functional wholes,

and sketch a network-based ontology that can represent a diverse set of processes

including, for example, as well as phylogenetic relations, interactions that stabilise

or destabilise the interacting entities, spatial relations, ecological connections, and

genetic exchanges. We use this pluralistic framework for evaluating (i) the existing

ontological assumptions in evolution (e.g. whether currently recognized entities are

adequate for understanding the causes of change and stabilisation in the microbial

world), and (ii) for identifying hidden ontological kinds, essentially invisible from

within a more limited perspective. We propose to recognize additional classes of

entities that provide new insights into the structure of the microbial world, namely
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‘‘processually equivalent’’ entities, ‘‘processually versatile’’ entities, and ‘‘stabi-

lized’’ entities.

Keywords Ontology � Microbial evolution � Process philosophy � Tree of life �
Network

Introduction: biological ontology

Fundamental to any scientific view of the natural world is an ontology: a view of the

kinds of things, their most important properties and capacities, and their typical

interactions, that constitute the domain of nature under consideration. Ultimately we

assume that such an ontology must be empirically grounded. However, the central role

that ontological assumptions play in the articulation of the scientific investigation of a

domain is such that they are not easily questioned. They are deep within the Quinean

web of belief, or, to adapt a phrase from (Wimsatt 2007) to a different purpose,

generatively entrenched. Empirical results that appear to threaten this basic ontology

are liable to be reinterpreted or treated with suspicion. It can easily seem that the

central ontological assumptions are a priori foundations for the scientific domain. Most

fundamental to the ontological framework of a scientific field will be categories of

entities and the kinds of relations that hold between these entities. So, for example, the

basic ontology of chemistry might be atoms and the bonds that occur between atoms.

Needless to say, things will be more complicated and diverse for the life sciences.

As a quick preliminary, we should mention our understanding of what makes an

entity ‘real’ as opposed to a mere artefact of our representation. We assume that real

entities are those that have causal powers; complex entities are real if they have

causal powers that are not merely aggregates of the causal powers of their parts.

Organisms, for example, can do things that none of their parts can manage on their

own. Similarly functional proteins have capacities—catalytic, structural, etc.—that

are not exhibited by any of the amino acids of which they are composed. We don’t

want to commit to any particular account of causation; perhaps ‘having a causal

power’ means just ‘making a difference to something else’.1 Making a difference to

something is a minimal necessary condition for being the kind of entity we have any

interest in recognising in formulating a biological ontology.

A more abstract metaphysical distinction is also central to our thinking about

biological ontology (and perhaps ontology generally). We understand living things

to be most fundamentally the consequences of numerous interweaving (occasionally

nested) processes. Although it is common to describe the domain of biology as

consisting of things, for example organisms, cells, genes, and so on, we understand

even these as ultimately processual. As recent thinking in evolutionary biology,

notably the rapidly growing field of evolutionary developmental biology (evo-devo)

has emphasised, an organism is a developmental process. When we use a set of

properties to describe the adult state of an organism, perhaps for taxonomic

1 The classic exposition of such a difference-making account of causation is Woodward (2003). More

robust accounts of causal powers can be found in Cartwright (1989) and Mumford and Anjum (2011).
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purposes, we are abstracting a particular time slice from this developmental process.

For these reasons, the ontology we aim to describe is an ontology of processes. A

processual ontology should characterize entities in terms of how they emerge, are

maintained and are stabilized. As evolution is uncontroversially a process, an

evolutionary ontology will quite naturally be processual. An evolutionary ontology

of the living world should distinguish the real evolutionary players, the units with

causal powers resulting from or contributing to evolutionary processes.

A further premise of our argument, which leads directly from the preceding

point, is that the naturalness with which we see the biological world as composed of

relatively stable things needs to be explained in terms of a variety of processes that

stabilise these entities. Such processes range from the multiple homeostatic

mechanisms that maintain metabolisms within viable parameters, to the stabilising

natural selection that maintains the viability of a population across generations. This

will be discussed in more detail below. Here we just reiterate that what we are

inclined to think of as biological things are, on more careful inspection, specific

temporal stages of stabilised biological processes. Furthermore, since these

stabilising processes take place at very different time scales—from many thousands

of years for the stabilising selection of a metazoan lineage, to as little as

milliseconds for the stabilisation of a functional macromolecule—whether an entity

appears as thing-like will depend on the time scale with which we are concerned.

Again, these ideas will be taken up in much more detail below.

While we believe that the argument of this paper would apply equally to the

ontogeny and phylogeny of multicellular organisms, in this paper we will focus on

the evolutionary ontology of the microbial world, where its application is most

clear-cut. By ‘microbes’ we mean what are generally referred to as unicellular

organisms: the prokaryotes, Bacteria and Archaea; a wide variety of protists and

fungi; and subcellular entities such as viruses and plasmids. This restriction does

still leave us with about 80 % of the history of life and the vast majority of entities

that have existed in the more recent 20 %. The complexity of microbes, we would

add, is often underappreciated. Microbes commonly engage in multicellular and

multilineage organisations, such as multispecies biofilms, in which microbial cells

undergo cellular differentiation, and exhibit some form of division of labor (Ghigo

2001; Hall-Stoodley et al. 2004; Reisner et al. 2006; Ereshefsky and Pedroso 2012).

So the limitation of our analysis to the microbial realm is a minor one.2

Evolutionary ontology: the standard model

The standard evolutionary ontology of biology is hierarchical. Starting with the

intuitively central category of organisms, one can work downwards through a

hierarchy of organs, cells, organelles, and molecules. This is a hierarchy in which

entities at each level are constituents of entities at the next higher level. Moreover it

2 The opposite neglect of the microbial world is, we would argue, a much commoner and more serious

fault. For a general argument for the importance of the microbial world, and the limitations imposed on

philosophy of biology by its neglect, see O’Malley and Dupré (2007).
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is possible to move upwards from the organism to the level of species, which are

themselves widely considered to be concrete individual entities of which organisms

are the constituent parts (Hull 1989). It has also been thought that this hierarchy is

the key to a proper scientific epistemology, since the scientific understanding of

entities at one level should be a consequence of discovering the properties of its

constituents at the next lower level. This reductionist view, however, has become

highly controversial and is anyhow not the topic of this essay. Here we are

concerned merely with how this standard evolutionary ontology, based on a

genealogy emphasizing vertical inheritance, has had a profound influence on the

structure of evolutionary thinking. The kind of thinking we have in mind is most

distinctively represented by the construction of genealogical trees, whether of

species, organisms, cells, genomes, genes, or whatever else.

Central to the tree model are the assumptions that through evolutionary time

entities replicate themselves (or are replicated), and that this process of replication

produces the reproductively linked sequences of similar entities that constitute

lineages. These lineages, then, are everywhere constrained within the limits of the

branch of the tree in which they are located. With what is generally considered the

minor exception of hybrids (Heliconius Genome Consortium 2012), lineages of

genes move between different organisms through reproduction and sexual

recombination, but only so long as the destination organism is located within the

same branch. The whole branch can be seen as an entity held together (at least for

organisms to which this applies) by the sexually mediated flow of genes between

organisms. Intermediate entities such as cells or genomes are simply carried along

by their organismic hosts, and for cladists, at least, the tree of species is just a higher

level representation of this same tree of organisms.

We certainly do not mean to deny that this evolutionary ontology has been

extremely productive for many parts of biology. It has, for example, justified and

guided the search for more representatives of the classes it recognises, notably

genes, organisms and species. Just one example would be the discrimination of

morphologically very similar sibling species on the basis of genetic separation

(Mayr 1963). More recently it has been used to justify the use of lower level entities

as proxies for investigating the structure and history of the biological world as

constituted by higher level entities. For example, the use of genetic analysis to map

the phylogenetic history of metazoa has provided many insights. But it must be

noted that only in so far as lineages of genes and lineages of species really are

constrained within the same branch of the tree are inferences from the history of

genes to the history of species legitimate. This condition implies that there are

severe limits to the model, and areas, for example phylogenetic analysis of

prokaryotes, where is has proved less effective (Bapteste et al. 2009).

Consequently, we will argue that in spite of its major contribution to evolutionary

studies, the tree picture has also provided us with some problematic ontological

entities, e.g. classes that are not causally real processes. In particular, it has often

encouraged the identification of evolutionary players—in our understanding the

units with causal powers either resulting from or contributing to evolutionary

processes—with phylogenetic species, and clades. But while clades have a historical

coherence, it is not clear that they constitute entities with causal powers of their
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own. Hence, a processual evolutionary perspective should provide something quite

distinct from the standard evolutionary ontology, by distinguishing the emergence

and stabilization of objects irrespective of any a priori partitions between distinct

levels of biological organisation (as when interactions between levels contribute to

the emergence/stabilization of new entities during evolution), and irrespective of

possibly artificial genealogical partitions (as when attention solely to genealogical

lineages ignores the origin and sustainability of associations between multiple

lineages into a functional unit).

Central to the standard model, and also central to the argument of this paper, is

the concept of a lineage. We will not attempt to offer any detailed analysis of this

important concept, but one uncontentious aspect is that it refers to sequences of

more or less similar entities over generally long periods of time. Sequences often

thought of as lineages could be of organisms, cells, genes, or genomes. But temporal

successions of organs, proteins, or indeed anything that occurs regularly in an

organism, could also be identified and might be considered as lineages. We shall

make just two points about such potential lineages. First, the processes that maintain

and stabilise these sequences are quite diverse. Certainly there must be such

processes to sustain a lineage, processes that explain the constant reproduction of

very similar entities, but we should not assume there is anything common to these

processes beyond their capacity to produce this outcome. Second, some lineages are

physically embedded within lineages of more complex entities. Thus lineages of

livers are entirely embedded in lineages of metazoan organisms. This is, no doubt,

the reason why lineages of livers do not attract much theoretical attention. If livers

could occasionally evolve in a manner spatially uncoupled from the whole that they

partially compose, they would be of great interest, no matter whether they reproduce

by themselves or are reproduced as a byproduct of the reproduction of some

containing entity (i.e. whether they are simple reproducers or scaffolded reproducers

(Godfrey-Smith 2009)). Gene lineages are precisely such embedded, yet evolution-

arily potentially independent, lineages in microbial organisms. When laterally

transferred genes encode for molecular ‘‘organs’’ (Forterre 2010), organs, too, can

move from one bacterium to another (e.g. a flagellum can be introduced into a

nonmotile bacterium (Diene et al. 2012)).

Like an organism, an organ such as the bacterial flagellum requires particular

genes to be reproduced, and mutations in these genes are physical marks of possible

transformations of this organ. Such mutations will track the lineage of flagella.

When such genes transfer laterally from one cell to another, the evolution of the

lineage of flagella as tracked by these mutations is uncoupled from that of the

lineage of its previous carrier, and thus becomes a potential object of study in its

own right: its evolution is now partly autonomous. If a particular flagellar

organisation lasted longer than the bacterial species in which it was first evolved it,

or any other part with a lifespan uncoupled from that of its embedding host, would

have an evolutionary history distinct not only from that of its original host, but also

from any subsequent host.

In the microbial world, lineages of genes, or genomes, are not fully embedded in

lineages of organisms, or even of species; lineages of genes can be independent

from lineages of genomes. The interweaving of independent though sometimes
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coincident lineages will be central to the general picture we hope to present. These

will include, in addition to those mentioned, lineages of mobile acellular genetic

elements such as viruses and plasmids, and lineages of symbiotic communities of

interacting organisms, though the complexity of the processes that sustain the latter

may make their lineage formation less central to the analysis. This interacting

multiplicity of kinds of lineage, with distinct stabilisation time scales and different

degrees of obligate physical connection, introduces important limitations to the

standard model that our alternative presentation of an extended evolutionary

ontology aims to address.

Problems with the standard model

The starting point for our understanding of microbial ontology is that the tree of life

as conventionally understood, far from being a universal framework, is a model of

limited usefulness for comprehending the microbial world. This is primarily because

of the phenomenon of lateral gene transfer (LGT): transfer of genes between often

very different kinds of organisms or, in the present context, cells (Bapteste et al.

2009). What this phenomenon implies is that, contrary to the simple ontological

vision embodied in the tree of life, the origins of the genetic components that are

found in a biological entity may be quite disparate (Bapteste and Burian 2010;

Baquero 2011; Dagan et al. 2008; Fondi and Fani 2010; Lima-Mendez et al. 2008;

Moustafa et al. 2009; Puigbo et al. 2010; Skippington and Ragan 2011a, b; Smillie

et al. 2011).

This, we think, is exemplary of a quite general characteristic of biological

entities. Rather than coming into being in a unitary way through a unique path (e.g.,

a series of ever smaller branches in the tree of life) biological entities typically

involve the coming together of a range of constituents often from diverse sources

(Bapteste et al. 2012; Bouchard 2010; Hatfull et al. 2008; Lane and Archibald 2008;

Lima-Mendez et al. 2008; Martin and Embley 2006; Moustafa et al. 2009;

Zhaxybayeva et al. 2009). Another, perhaps more controversial, example is of the

organism. If one thinks of the organism not within the ontological framework

provided by the tree of life, but rather in terms of the functional wholes that interact

with their wider biological and abiotic contexts, then it is rapidly apparent that these

wholes typically involve a variety of entities with quite disparate origins. Typical

metazoans require diverse and numerous microbial symbionts to function normally

(Greenblum et al. 2012; Lozupone et al. 2008; Qu et al. 2008). Microbes themselves

are most commonly found in complex collaborations such as biofilms (Ghigo 2001;

Hall-Stoodley et al. 2004; Reisner et al. 2006). There is an increasingly compelling

case for taking the whole symbiotic system as the most basic referent for the term

‘organism’ (Dupré and O’Malley 2009).

So the problem with the tree of life grounding our ideas about evolutionary

ontology is that it privileges one particular biological relation, that of vertical

inheritance from parent to offspring, and one type of entity, namely those with

genealogical coherence. Hence this model, which is focused exclusively on

genealogical relations, will give a very partial evolutionary ontology, a deficient
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inventory of the causal players in the evolutionary process. Of course, all scientific

representations in biology are to some degree abstractions from the full complexity

of living systems, so it is no sufficient criticism of the tree of life that it emphasises

one set of relations over others (Wimsatt 2007; Levins 1984). And undoubtedly its

genealogical focus has provided important insights in some areas of biology,

notably eukaryote systematics. Abstraction also raises an ever-present danger,

however, which is that part of the truth will be taken as the whole truth (Cartwright

1983; Dupré 1993). A particularly interesting instance of this danger is the

possibility of substantial distortion of the basic ontology of a field, in this case the

reduction of an evolutionary ontology to a genealogical ontology. The tree of life,

we think, by insisting on the predominant importance of vertically transmitted

origin as the defining feature of biological entities, has tended to promote just such

an error, marginalising evolutionarily significant entities that did not evolve along

the single, privileged tree.

The prevalence of lateral gene transfer among microbes gives the tree of life an

additional disadvantage of being almost impossible to identify (Bapteste et al. 2008;

Dagan and Martin 2006). It is true that there must, in principle, be an actual

historical tree of cells, since cells do, barring some very rare if evolutionarily

decisive events such as the origin of the eukaryote cell, always bifurcate in

reproduction. But extensive lateral gene transfer makes this tree of cells impossible

to discern since any genetic marker we use to trace the relevant reproductive

relations will give us only a gene tree, a history of that gene. And lateral gene

transfer implies that different gene trees cannot be relied upon to coincide on any

unique tree of cells. Moreover, even if it were accurately reconstructible, such a tree

of cells would be of dubious utility, since lateral gene transfer also implies that the

genetically derived capacities of a cell could not be inferred from its position in the

tree of cells.

The problem can best be understood in terms of different time scales, a

perspective we shall emphasise throughout this paper. Even in the absence of lateral

gene transfer, the branching pattern of the gene lineage (produced by mutations)

cannot be directly translated into the branching pattern of the cell lineage (produced

by cellular divisions). Mutation events occur at a different time scale than do events

of cellular division. Sometimes, mutations accumulate faster in the cell than the cell

divides; sometimes (most of the time) the cell divides faster than mutations

accumulate in the gene. Therefore, the gene lineage generally evolves more slowly

than the cell lineage. But whatever the specific rates of evolution, there is no reason

to assume a direct correspondence between the gene lineage and the cellular lineage

in which genes from that family were embedded. A gene tree, in sum, is a tree of

genes not a tree of cells. Consequently, it seems that we need a more complex

representation of the interactions and processes within the microbiological world

than can be provided by giving ontological priority to either the tree of life (if such

there be) or the tree of cells. We intend to sketch such a model in this paper.

In moving to an ontological framework that goes beyond the limitations of the

standard model, and that recognises a variety of distinct and non-coincident

genealogies, we aim to avoid the monism that frequently infects the standard

ontological framework. We recognise, for example, that entities may have quite
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different roles in different systems and that the ontology may seem quite different

when we adopt perspectives that emphasise different features. As an extreme

illustration of the first point we might think of DNA sequences that mimic proteins

(Zack et al. 1995; Dryden and Tock 2006), often to counteract various kinds of

immune response. Such sequences thus belong in some contexts in the same

functional categories as the proteins they mimic. Of course in other contexts, such as

DNA sequence replication, DNA protein mimics function as normal DNA. Less

exotic are so-called moonlighting proteins, proteins that function in quite different

ways in different cellular contexts. The use of the term ‘‘moonlighting’’ nicely

displays the deep assumption that normally a molecule has one proper function, and

something is out of the ordinary when it is discovered doing something different

(Henderson and Martin 2011; Huberts and van der Klei 2010; Collingridge et al.

2010). More familiar, perhaps, is the realisation that genes, far from having one

specific function may, by virtue of such mechanisms as alternative splicing, end up

with many different protein products serving a range of functions (Bondos and

Hsiao 2012; Toor et al. 2006). We take this to be a self-evidently sensible strategy

for biological systems to evolve: surely it is efficient to use entities that an organism

has the resources to produce for as many functions as they can be made to serve.

Monism is not a necessary concomitant of the standard ontology, but we think that it

fits easily with the linear focus on vertical inheritance: the function of an entity is its

role in driving the evolving lineage along its branch of the tree. Though it is well

known that homology alone may not provide a reliable guideline for functional

classification, it is nevertheless often the case that homology is used to infer

functional information, for example in the. functional annotation of genes using

COG, or KEGG databases3 (Tanabe and Kanehisa 2012; Tatusov et al. 2001).

The issue of entities with multiple functions—a possibility that may easily be

obscured by the attribution of a single place in a hierarchical ontology—is one

aspect of a much broader pluralism that we think an adequate evolutionary ontology

must encompass, and one central reason for rejecting the standard ontology that has

attributed overwhelming importance to just one process, phylogeny. We need an

ontology that can represent a diverse set of processes including, for example, as well

as phylogenetic relations, interactions that stabilise or destabilise the interacting

entities, spatial relations, ecological connections, genetic exchanges, etc. In the next

section we will offer a sketch of a network that aims to represent a variety of

processes connecting different entities. The network model we have in mind should

be able to detect, for example, cases in which the functional signature is stronger

than or even contradicts the phylogenetic signal of an entity (Dinsdale et al. 2008;

Kav et al. 2012; Lozupone et al. 2008). Indeed, what we are aiming to describe, at

least as a theoretical ideal, is a synoptic picture including both microbial entities at

multiple levels and multiple connecting processes. A network seems a natural way

3 Clusters of Orthologous Groups (COGs) of proteins are generated by comparing the protein sequences

of complete prokaryotic genomes; each of these clusters is classified into one or several functional

categories, such as, for instance, RNA processing and modification, or cell-cycle control and mitosis. The

KEGG database is an integrated database in which molecular-level information is classified in ways that

facilitate the systemic study of the molecular interactions and chemical reactions in which genes are

involved in an organism.
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to represent diverse kinds of entities (as nodes) and diverse kinds of relations (by

edges), even though this representation will only be able to provide a static

representation of the processes affecting biological entities. In principle, the

dynamics of these processes (and how they unfold over time) can be investigated by

the reconstruction of series of temporally delimited networks, each of them

corresponding to a particular time slice. However, in practice this is still too

complex an enterprise, but the introduction of a static apparatus will already

improve how microbiologists capture the variety of processes that stabilise entities

within any of a wide range of time scales. Such networks are already being used,

and have met with increasing interest in the microbiological community (Skipp-

ington and Ragan 2011b; Skippington and Ragan 2012).

We do not suggest that any imaginable model could capture every possible

perspective or set of processes. But representing several that we take to be

especially important will at least give us a reasonable sense of the partiality of

particular perspectives, and the kinds of ways in which different perspectives

overlap and interact.4 Finally, though, we also want to set some limits on the lush

ontology we are proposing. We hope that it maintains a proper naturalness, and

avoids the completely artificial or artefactual. The key idea here is that we are

looking for entities that have, as briefly mentioned above, some distinctive causal

power. A pattern in the model we describe provides a candidate for a significant

entity. Confirmation of that status requires that its causal efficacy in vivo, or at least

in vitro, be demonstrated.

A crucial motivation for adopting the framework we propose is that the standard

phylogenetic model obscures the implications of the different rates of biological

processes, and we conclude this section with some further remarks on that issue. We

have noted that the stabilisations of process that result in what we standardly treat as

biological objects occur in specific and diverse time frames. This creates a problem

for the inferences generally licensed by the standard model, a problem that is

independent of, and perhaps even deeper than, the problem of intersecting lineages.

This problem arises from the fact that these inferences, for example from patterns of

genes to patterns of species, implicitly make assumptions about the relevant time

scales of the processes that stabilise the entities in these processes, and these

assumptions may often be incorrect.

It will be helpful to approach the problem by thinking of a much simpler

example, and one that starts with something far from obviously conceived as the

temporally stabilized result of processes, a mountain. While a mountain may be

unequivocally part of the stable background of largely unchanging things from the

perspective of a hiker ascending its slopes, from the point of view of geology it is a

very slow process. Consider the small mountains or hills on Dartmoor in South-

West England. These are typically topped by tors, impressive piles of huge granite

rocks, left behind by the erosion of the softer material that originally covered them.

Eventually, perhaps, these granite extrusions may be all that is left of these features.

4 The pluralism defended earlier by one of us (Dupré (1993)) insufficiently emphasised the important

problem of bringing multiple perspectives to bear on particular problems. This problem is addressed by

Mitchell (2003).
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Though these were parts of the relevant, or ancestral, features for as long as they

existed (since they were extruded), it would be wrong to infer from attention to

these maximally stable constituents over time that the entity to which they belong

had at all times been a pile of granite. Indeed it is currently a more complex mixture

of different kinds of parts. And even more importantly, it would clearly be wrong to

assume that the bits of granite had always been part of a tor or mountain at all. For

example, during the late Cretaceous Dartmoor was submerged by the rising sea

level, and the granite was covered with a limestone deposit; subsequently sea levels

fell, the land re-emerged, and the limestone covering was eroded, re-exposing the

granite. In the Cretaceous, then, the lumps of granite were parts of the sea bed. If

lumps of granite are more stable entities than mountains or sea beds, the history of a

lump of granite does not correspond to the history of mountains or sea beds. We

suggest that such an inference from stablest constituent to a stable kind of entity of

which it is part is a central, very common, and problematic style of inference within

the standard model.

Consider the use of ribosomal genes in phylogenetic inference. These genes were

selected precisely because of their assumed high level of stability—or more

precisely the stability of their lineages—over long periods of time. The stabilisation

process is assumed to be selection for a vital feature of all cells. The problem is with

the attempt to infer general characteristics of entities, evolving at a different time

scale and often at other levels (organisms, species), from these maximally stabilised

features. We know that lineages of organisms and species are stabilised over much

shorter time scales; so any such inference runs the risk of a mistake parallel to the

conclusion that Dartmoor tors were always piles of bare granite or that pieces of this

granite were always parts of tors. We offer two brief examples of such errors.

The first relates to the question of microbial species. Increasingly many

microbiologists will now deny that there is any interesting analogue of the eukaryote

species in the prokaryote world, but this remains a hotly contested issue (Doolittle

and Zhaxybayeva 2009; Gevers et al. 2005; Mora et al. 2011). Resistance to

abandoning the notion of species for prokaryotes rests in part, we suggest, on the

implicit idea that if, using highly stable markers such as ribosomal genes, we are

able to trace evolutionary history into the prokaryote past, we must be tracing

essentially the same homogeneous process involving throughout the same kinds of

entities. But in fact we know that the history of the entities containing these

relatively most stable genes is composed of many different time scales of

stabilisation, so a gene tree provides no reason for assuming a similar general

structure of species throughout the evolutionary time span of its existence. The

problem here is not merely the familiar one that genes (or even non-coding DNA

segments) must be selected with an appropriate rate of evolution for tackling a

particular phylogenetic issue (Yang 1998). It is rather that the standard evolutionary

ontology is used in ways that ignore the fundamental difficulty in inferring the

ontological status of rapidly changing wholes from the study of slowly evolving

parts. The use of existing ontological categories to interpret the branching of a gene

tree as if these categories were fixed throughout the entire history of the gene can

lead to error. For instance, sexual and asexual eukaryotes may have histones with

the exact same sequence. However, sexual and asexual species should be considered
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as having distinct ontologies: they are not generated, affected or stabilized by the

same processes. There need not be any branchings in the histone (or equally

ribosomal) tree that correspond to a divergence between sexual and asexual species.

Because the standard evolutionary ontology encourages the unwarranted assumption

of an evolutionary coupling between parts and wholes, it is particularly ill-suited to

making inferences about the general structure of living processes across major

evolutionary transitions (Fig. 1).

Our second example shows that the problem is not limited to inferences about the

past. Consider the human gut microbiome. At a certain point in the investigation of

this entity it appeared that there were considerable differences in the populations of

microbes found in humans in different parts of the world as measured by standard

16S rRNA methods. One might easily have imagined that by comparing these

different microbiota we could discover, for instance, which were the essential

Fig. 1 Decoupling of changes in sequence and carrier-ontology.
The evolution of the relatively most stable entities used to track evolutionary changes in the microbial
world (e.g. sequences from a well conserved gene family) can be represented by a tree. The branching and
ancestral nodes in such a gene tree are commonly used to infer the presence of a particular type of
evolutionary event (e.g. speciation, transfer, etc.), affecting a particular class of less stable entities (e.g.
ancestral organism, species, etc.). However, the difference of time scales for the stabilisation of the most
stable entities and that for the other entities that these slowly evolving sequences are supposed to be
tracking makes it impossible to infer a direct correspondence between the changes recorded in the gene
tree and those that have occurred in other entities. Dichotomies and divergences in the gene tree cannot be
directly coupled to changes in the ontology of the gene carriers, and the evolutionary events affecting less
stable entities of which this gene is a component. There is not necessarily information on the gene tree
alone about what type of entities carried a particular ancestral gene form, and about whether and when
these types of entities may have dramatically changed, i.e. when the evolution of novel classes of
sequence-based entities resulted in major (hypothetical) evolutionary transitions. (Interested readers can
see Gross and Bhattacharya (2010), Koonin and Martin (2005), and Woese (1990) for more details on
some of these transitions.) Such decoupling means that gene trees are informative about gene history, but
may not be informative about the evolution of other entities, contrary to what is assumed in a standard
ontology, which couples the evolutionary history of parts and wholes. Fig. 1 represents important
ontological transitions by changes in branch format. Because of these changes, relatively similar
sequences in a branching lineage may reside in different types of (sometimes novel) entities with different
time scales for their stabilisation. Interpreting a sequence tree with a single ontology from present to past
will then provide a severely distorted view of evolution
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symbionts and which were more opportunistic visitors. However, as metagenomic

methods were developed and applied to these populations it emerged that the total

genetic constitution of different gut microbiomes was far more similar than

indicated by 16S rRNA taxonomy (Kav et al. 2012; Lozupone et al. 2008). The

explanation is fairly clear. The object that is stabilised by the constraints of the

animal gut is the metagenome of the whole community: this provides the genetic

resources required for normal animal functions. Lineages of microbes are much less

stable and more diverse, with many genes moving between them. So the relatively

stable genetic resources required for the animal gut community can be provided by a

wide variety of relatively less stable collections of lineages. Inferences from the

discovery that a bacterial lineage serves a necessary function in a particular gut, to

the conclusion that this is an essential animal symbiont, would be quite unjustified.

Proper inference in this area requires identifying the relevant stabilised entities

serving the various functions of the gut microbiome, and this is a higher level entity

than the lineages of bacteria that seem the natural objects of interest within the

standard model. We suspect that failure to pay attention to the different time scales

at which entities are stabilised can lead to serious distortions in our inferences about

the existence of biological entities at particular times. Understanding the linkages

and uncouplings between nested hierarchies of entities absolutely requires such

attention: time scales for the stabilisation of entities should feature as an integral

aspect of the evolutionary ontology.

A multidimensional framework for microbial ontology

Microbiologists have so far grounded their ontologies largely on a single process.

Vertical descent with modification can be taken to underlie various taxonomic

projects: the classification of organisms into a particular species; the classification of

genes into functional categories (Tatusov et al. 2001); stabilization of sets of

metabolic capacities to classify entities with specific impacts on geochemical

processes, for example multiple species as denitrifiers; and so on. Occasionally,

investigations go beyond the vertical inheritance model to enhance the understand-

ing of complex microbial systems, for example to determine which functional

categories of genes were vertically inherited or laterally transferred in denitrifiers

yet not in other species (Falkowski et al. 2008). However, we argue that such cross-

fertilisation of ontological information should be made more systematic in order to

expand the explanatory power of studies of the microbial world. We propose a

model that starts with as wide a range of currently recognised entities as possible, at

multiple levels of organisations, and makes room for multiple processes affecting

these entities. Such a model could provide a powerful framework for evaluating

(i) our existing ontological assumptions (e.g. whether the currently distinguished

entities are adequate for understanding the causes of change and stabilisation in the

microbial world), as well as (ii) for identifying potentially hidden ontological

classes, thereby recognising additional entities that provide new insights into the

structure of the microbial world (Skippington and Ragan 2012, 2011b).
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Consideration of well-known features of microbial organisation makes the

recourse to such a multidimensional framework compelling. The evolution of the

majority of known microbial communities and coalitions involves entities from

multiple levels of biological organisation, participating in a wide range of biological

processes (Ghigo 2001; Hall-Stoodley et al. 2004; Overmann 2010; Reisner et al.

2006; Smillie et al. 2011). Take for instance the well-studied coalition between

oceanic photosynthetic bacteria and their phages carrying photosynthetic genes. In

this coalition, infection results in an increase of photosynthetic productivity in

infected bacteria, thereby preventing the extinction of the bacterial population

(Alperovitch-Lavy et al. 2011; Sullivan et al. 2006; Hellweger 2009). An accurate

(and dynamic) model of the evolution of lineages of such cyanobacteria requires (at

least) the consideration of three biological levels: mobile genetic elements, bacterial

cells, and the integrated community formed by the coalition of mobile elements and

bacterial cells. It also requires the comprehension of several processes: the transfer

of genetic material (e.g. the psbA photosynthetic gene) between cyanophages,

between cyanophages and bacterial cells, and between bacterial cells; the stabilising

selection against changes in that photosynthetic gene in all the entities carrying the

genes; the replication of cells and of phages; and arguably group selection favouring

these coalitions (Villarreal 2009) over populations of cyanobacteria infected by

phages that do not carry photosynthetic genes. Not all of these processes can be

directly mapped onto the hierarchy based on vertical descent among entities within

a single branch of the tree of life.

We propose to replace the hierarchical one-dimensional framework with a

multidimensional framework, in which processual interactions between these

microbial entities, crossing over what are generally seen as distinct levels of

biological organisations, can be explicitly modelled (Fig. 2).

As a first step, we propose the construction of networks with nodes of distinct

types, representing different ontological categories of entities, and edges of distinct

types, representing different types of causal interactions or other biologically

Fig. 2 Schematic representation of a multidimensional network.
Nodes are previously recognized entities, from different levels of biological organisation (indicated by
different symbols). The value ‘1’ means that two entities were inferred to result from, or be involved in, a
particular process (represented by an edge with a particular line type), ‘0’ means that no such relationship
could be inferred. The matrix to the left would result in the network to the right. This picture could
provide a less biased and partial representation that will enable us both to analyse, and to suggest methods
for the detection of, the ontology for this kind of common example from microbiology
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significant relations (e.g., homology, collocation–the tendency to appear in the same

place) occurring between these entities. This graph contrasts with the graph used in

the standard ontology: the evolutionary tree is an acyclic graph on which all nodes

are necessarily connected, while our network can be cyclic and disconnected.

To make this approach analytically tractable, the number of types of nodes and of

edges should be limited. We propose that nodes should represent gene sequences,

proteins, cells, mobile genetic elements, and communities. Three main types of edges

should be sufficient to provide useful information about the relations within systems

that include representatives of these types of entities. First, edges reflecting processes

responsible for particular similarities between these nodes could offer an initial

structuring of the network. These similarity-generating processes could be further

distinguished into (i) processes of vertical inheritance, resulting in a global similarity

between genealogically related entities (i.e. two gene sequences that would align along

all their sequence) (Adai et al. 2004); (ii) processes of recombination introducing

partial, local similarities between entities resulting from these combinations and the

lineages that recombined (i.e. two gene sequences that would only align over part of

their sequences); (iii) selective pressures leading to convergent phenotypes (e.g.

enrichment in hydrophobic amino acid in transmembrane proteins (Koehler et al.

2009), or GC-biased gene conversion (Hildebrand et al. 2010)). Second, edges

reflecting causal interactions between nodes, such as the transfer of biological material

(e.g. DNA, protein, cells) between two entities, or processes resulting in conflicts

between these entities (e.g. predation, arms races, etc.) could be searched for. These

interactions could be further characterized as stabilizing or destabilizing (Bapteste

et al. 2012). Third, and finally, edges should represent collocation, the fact that two

entities are typically found close together or in the same place.

As one example, a simple approach to the detection of stabilizing selection at a

molecular level in a network of microbial entities could be to explore whether the

genes shared by these entities (each represented by a node) are under purifying

selection. The result of classical KA/KS analysis between groups of connected

sequences (i.e. the ratio of the number of non-synonymous substitutions per non-

synonymous site (KA) to the number of synonymous substitutions per synonymous

site (KS), which provides an indicator of selective pressure acting on a protein-

coding gene), could thus be incorporated in the network by reporting edges of

different colours for different values of KA/KS. The detection of groups of entities

sharing sequences undergoing similar selection could be linked by an edge, which

would reveal groups of entities affected by the same stabilizing selection on

particular genes. It would also be possible with such a network to represent

communities of genetic exchanges (compare Skippington and Ragan 2011a) based

on edges of stabilizing selection at the gene level. Finally, edges reflecting processes

responsible for the collocation of entities in the microbial world would introduce

relevant information on the coming together of these entities at a given

spatiotemporal scale, or on ecological selective processes causing these entities to

inhabit a given type of environment. Each of these types of edges introduces a

dimension along which the behaviour of entities from the microbial world (e.g. their

patterns of connection to other entities in the network) can be studied.
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Such a rich network would offer a much closer approximation to a synoptic

picture of the causal interactions between, and longer causal chains connecting,

microbial entities, and their dynamics. Some causal chains are made of a single type

of interaction; other causal chains result from a mixture of several different types.

Our network model therefore offers a natural framework to represent the cascading

effects or positive feedback loops that sustain the existence of biological entities.

Such a multidimensional network can be directly applied to tackle several of the

ontological issues described above. First, it makes explicit both the causal relations

that initiate change and those that foster stability; it therefore highlights the ultimately

processual character of the entities in our basic ontological framework. Moreover,

representing processes at different time-scales brings out the fact that what are treated

in the standard evolutionary model as stable, maximally coherent, entities are in

reality only units sufficiently stabilised to be treatable as fixed relative to a particular

time-scale for the purposes of a particular problem. (Recalling our illustrative

example, while a walker can very properly treat a mountain as a fixed feature of the

environment, from the perspective of tectonics it is a particular phase in a process.)

Furthermore, our networks can represent both the causal interactions of parts of an

entity, when these parts are represented by nodes, and the causal interactions of the

whole with different entities (and different parts of different entities). In that

framework it is natural to expect that the relationships between higher level entities

change when the relationships between their component parts change. Such a network

thus provides a more comprehensively dynamic vision of microbial entities, allowing

for modifications to an entity introduced by changes in the relationships between its

parts, either by changes in the relationships of the whole to other entities, or by

relations of its parts to other entities. This is a strength of the general framework,

because it does not privilege the most stable categories in understanding a

fundamentally dynamic biological world. This framework also offers a basis on

which to model the stabilisation and destabilisation of an entity over time. These

changes are caused by distinct influences (both internal and external) affecting a

given entity, and are represented by different types of edges. We thus explicitly

acknowledge the way in which features of the context in which it is placed contribute

to determining the identity (or indeed change of identity) of a higher level entity. It

should then become possible to determine when changes in the external or internal

relationships of an entity, visualized as features in the multidimensional topology of

some part of the causal network, may justify distinguishing new entities perhaps not

recognised in pre-existing ontological classes.

One example, in which moving to a more complex multidimensional perspective

might motivate a major change in ontology, is the distinction microbiologists make

between core and shell (peripheral) genes (Charlebois and Doolittle 2004; Medini

et al. 2005; Lukjancenko et al. 2010) to provide a criterion for ontological change:

provided an entity includes the core genes of E. coli, then an E. coli is what it is. A

more useful approach might be to recognise that changes in peripheral genes,

connected also to changes in the environment of a particular E. coli strain, produce

such radical modifications in its causal relations that we should recognise it as a

quite distinct kind of entity. We hope that the model we are sketching, by giving a

wider picture of these causal relations, would provide a better motivated basis for
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making such decisions. While the connections established between entities by core

genes are unlikely to change (unless all the core genes are lost), connections

established by peripheral genes may vary significantly between individuals, when

for instance a gene acquisition opens a new ecological niche to its carrier or exposes

it to novel selective processes (Lopez and Bapteste 2009; Fondi and Fani 2010;

Kloesges et al. 2011; Popa et al. 2011).

Expanding microbial evolutionary ontology

The framework offered by our network model makes possible the observation of

patterns of connections orthogonal to the expected ones for entities of a particular pre-

existing class. This could lead to the recognition of additional ontological classes, in

terms of which aspects of biological diversity could also be measured. More

specifically, we anticipate three major types of significant pattern that might be

observed in the network, which might lead us to postulate the existence of specific types

of entities: (i) ‘‘processually equivalent’’ entities (PE-entities), (ii) ‘‘processually

versatile’’ entities (PV-entities), and (iii) ‘‘stabilized’’ entities (S-entities) (Fig. 3).

PE-entities are entities that are seen to play a similar role in the network model,

because they display significant common topological local properties (i.e. they share

the same direct neighbours) (Fig. 3a). More precisely, entities could be called

equivalent if they share at least one causal chain (e.g. one path in common in the

network). It might be useful to treat processual equivalence as a matter of degree:

the higher the proportion of shared paths between two entities among all the paths in

the network model, the higher their degree of processual equivalence.

Defining classes of PE-entities is, of course, one thing the standard ontology aims

to achieve, and sometimes succeeds in achieving. For example, to the extent that

belonging to a species (i.e. being part of the same genealogical lineage) determines

organisms as having the same causal powers and relations, then this is a useful way

Fig. 3 Examples of some patterns that can be found in a multidimensional network.
Nodes are previously recognised entities. Edges indicates similarity, collocation or causal relationships
between two entities. Entities from different levels of biological organisation are represented by different
shapes. When edges are observed in different conditions, or result from, or are involved in, different
causal processes, they are represented by a different line type. a In black, two PE-entities, sharing a
significant fraction of direct neighbours. b In black, a PV-entity, involved in different causal chains, in
different conditions. When this node is removed, the graph disconnects in multiple subgraphs, therefore
the PV-entity is a local clique minimal separator of the graph. c Three sets of S-entities. On the left,
S-entities are stabilized by the same process. On the right, S-entities are stabilized by the interplay of
different processes. At the bottom, S-entities are stabilized by multiple processes
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of generating processually equivalent classes. The same possibility arises for

lineages of genes and gene families. When the assumption of processual

equivalence within a genealogical class fails, however, reasons for their processual

heterogeneity can be searched for in (at least) two directions. First, they may just be

classes with minimal explanatory interest or significance. The proposal of such

classes is not uncommon in systematics. For instance, the category of Chromal-

veolates (a large hypothetical clade of eukaryotes, allegedly deriving from an event

of secondary endosymbiosis of a red alga within a eukaryotic cell with two flagella)

has recently been shown to correspond to an artefactual grouping of unicellular

eukaryotes, about which it would be difficult to justify any systematic generaliza-

tions (Hackett et al. 2007). More interestingly, this heterogeneity may point toward

a genuine processual versatility within that class of entities (see below).

Another very significant possibility is that we may unexpectedly distinguish

classes of PE-entities that are highly diverse either structurally or genealogically or

both. Such classes might include entities from distinct levels of organisation, or

distantly related entities, that nevertheless play the same causal roles. Paradigmatic

for this case is the evolution of mimics, for example a protein that mimics DNA to

overcome the defences of restriction-modification systems (McMahon et al. 2009).

Such cases would be displayed in the multidimensional network when a bit of DNA

and a protein not coded by that DNA, or several genealogically unrelated proteins,

exhibit largely overlapping sets of direct neighbours. This pattern indicates that

these entities have largely similar causal effects, suggesting that they play very

similar or identical roles in the workings of the microbial world.

PV-entities are entities that are homogeneous in a traditional sense (structural or

genealogical) but are involved in a number of different causal processes. In our

network model, the set of direct neighbours of a PV-entity will change in different

contexts (Fig. 3b). As with processual equivalence, processual versatility could be

quantified based on the topological properties of these entities in the network. For

instance, the number of disconnected causal chains to which that entity belongs can

be computed by removing the node corresponding to that entity, followed by the

count of the n locally disconnected causal chains that result from this procedure.

The larger the value of n, the more versatile the entity is.

The observation that accepted categories such as species, or lineages, are PV-

entities is important for two reasons. First, if these categories are genuinely

explanatory units, this versatility may very well help to explain their evolutionary

success. Second, if a class of entities is processually versatile, we need to be

cautious about its suitability for broad generalization. For instance, if being part of a

species (e.g. E. coli) entailed that E. coli individuals would all behave similarly,

then individual E. coli cells in the network would be expected to have a rather

similar set of topological properties (e.g. similar patterns of gene transfer). If, on the

other hand, contextual differences could affect the causal powers exhibited by

distinct E. coli cells, then the class defined by this criterion would be shown to be of

seriously limited significance. If the goal of classification is to provide classes with

members that possess similar properties or, in terms of our network model, that

display the same pattern of connection, then processual versatility is a defect in a

putative class. More constructively, the detection of PV-entities emphasizes the fact
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that no quasi-essentialist assumption should be made about prokaryotic species. Not

all E. coli are pathogens, because pathogenicity can come from externally acquired

(or internal) changes in the individual cells, for instance as the result of the gain or

loss of mobile elements such as pathogenicity islands (Bezuidt et al. 2011;

Beauregard-Racine et al. 2011; Lukjancenko et al. 2010).

Entities at a lower level than the organism or species may also prove processually

versatile. It is sometimes supposed that a given gene sequence, for instance, should

be expected always to code for the same (set of) function(s), and a protein always to

perform the same function(s). Many genes indeed may very well carry invariant

genetic instructions, so that if these genes are laterally transferred from one

organism to another, they will, if expressed, code for proteins achieving the same

effect in the two organisms (Smillie et al. 2011; Alperovitch-Lavy et al. 2011). The

nature of the gene (or the protein), in short, is often seen as largely independent of

the context, robust to external variations. Changes in the context may make the

gene/protein useless or toxic (Sorek et al. 2007), but will not change the

fundamental functional nature of that molecule.

But by contrast to this highly stable—almost essentialist—view of the gene or

protein, it is also possible that a given genetic sequence does not encode a single (set

of) instruction(s), but that the context largely determines what the gene or protein

does, and therefore even what it is. And in fact it is well-known that genes are

capable of doing different things in different contexts, as is shown, for instance, by

the phenomenon of alternative splicing. For the case of proteins we have the

phenomenon of moonlighting, described above. Our network model would be

expected to distinguish such versatile entities (or classes) as belonging to two or

more distinct and disconnected causal clusters. Dynamic analysis of the network

might enable us to distinguish features that function as differentiating context, and

features that emerge as consequences of the particular context.

S-entities, finally, are another very important ontological category. They

correspond to sets of entities that are detectable because their connections are

stabilized, either by a single type of process, or by multiple types of processes (e.g.

cliques5 or quasi-cliques of causally related nodes, Fig. 3c). In the latter case, either

the interplay of multiple processes is responsible for the stabilized unit, or the

superposition of several independent but distinct processes. (An example here

would be the various distinct mechanisms that promote the formation of

microtubules in the elaboration of the mitotic spindle (Duncan and Wakefield

2011)). The coexistence of several distinct stabilising mechanisms is an especially

strong indication of a robust and biologically significant stabilised entity. This is

potentially important in determining the boundaries of complex assemblies such as,

for example, biofilms (Hall-Stoodley et al. 2004). The extent to which stabilising

links connect a particular kind of entity to the assembly should be a guide to

whether that entity should be considered a part of the larger whole, or a distinct

entity interacting with it.

5 A clique in an undirected graph is a subset of its vertices such that every two vertices in the subset are

connected by an edge.
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In general, to highlight novel instances of ontological classes that are not the

usual families of entities sharing a common ancestry, we propose the detection of

‘‘clubs’’ (Bapteste et al. 2012): stabilized groups of entities with one or more

detectable causal powers, resulting from the interplay of processes of evolution and

development orthogonal to processes generating the tree of cells. In theory, if

networks from successive temporal slices could be reconstructed, they would further

provide clues about the dynamics of stabilisation of such clubs.

One interesting kind of club includes bacteria and their phages. Typically, when a

free-living alphaproteobacterium acquires an endosymbiotic plasmid that confers

the ability to grow in nodules of plants, roots will acquire peripheral genes that

introduce this free-living alphaproteobacterium into the bacterial community that is

selected within the plant root nodule (Sullivan et al. 2002). The local topological

properties around that bacterium in the gene sharing network were changed by the

acquisition of these mobile genes, since new partnerships with a densely connected

set of endosymbiotic bacteria were thereby introduced.

Another example of traces left in temporal slices of the network as these entities

become stabilized could be found by contrasting the relationships between entities in a

network before and after the emergence of a novel chimerical organism, such as a

lichen (Grube and Hawksworth 2007), or the first eukaryotes (Martin and Müller 1998;

Moreira and Lopez-Garcia 1998). The local neighbourhood of such novel nodes, i.e. the

set of other nodes to which the super-organismal node is directly connected, would be

unprecedented in the graph. Most importantly, it would include nodes that were not

direct neighbours before the emergence of the super-organism. It could capture such

phenomena as the aggregation of micro-organisms and mobile elements such as

plasmids into a growing biofilm, or their selection as members of a stable multilevel

club, as for instance in the case of marine cyanobacteria and cyanophages (Alperovitch-

Lavy et al. 2011; Sullivan et al. 2006). It could also detect the process of fragmentation

in monophyletic groups (such as species) as their members undergo some kind of

divergence. Causes of these divergences might even be revealed, if for instance

members of a species show connections indicating that they are under the influence of

different groups of phages. This situation is indeed known to lead to the evolution of

populations of microbes with uneven fitnesses, and eventually to the extinction of some

of these diversifying populations, when members of the species carrying a particular

phage migrate or come in contact with other members of the same species that are not

immune to that phage (Villarreal 2009). Importantly, robust communities in the

network that do not match any simple category of the standard ontology (i.e.

communities involving entities from multiple levels of biological organisation or

distantly related lineages) will likely constitute S-entities that would be invisible from

within more traditional perspectives (i.e. communities of genetic exchanges involving

multiple lineages (Skippington and Ragan 2011a).

Explanatory use of non-standard ontological classes

The identification of the most significant set of entities is an essential precondition

for the scientific analysis of the microbial world. It determines the types of
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statements that can be made about nature, because it provides the objects about

which statements can be made. In the case of the standard ontology it not only

provides the entities, but since it is grounded in a single process, it also provides a

favoured set of relationships in terms of which these entities are likely to be better

understood. Typically, evolutionary scenarios in microbial evolution are focused on

the genealogical relationships between monophyletic groups. They firstly seek to

explain the structures observed in microbial diversity in terms of sister-groups,

divergence, and common ancestry. The recourse to different or additional

ontological classes could (at least in principle) make possible new kinds of

scientific hypotheses. These hypotheses should be better suited to the distinctive

character of the microbial world, and thereby likely to enhance our knowledge of it,

including our knowledge of its evolution.

We will briefly sketch some novel types of scientific claims (and even scientific

research programmes) that could quite naturally follow from the recognition of the

ontological classes described above: processually equivalent entities, processually

versatile entities, and stabilized entities.

PE-entities are defined by the detection of high degrees of similarity in the causal

chains in which a set of entities occurs. The cases of present interest are those in

which a particular class of PE-entities includes members that are structurally or

genealogically quite distinct. PE-entities may be found within one level of

biological organisation (e.g. when genes from distinct gene families code for the

same step of a metabolic pathway), but they can also belong to distinct levels of

biological organisations (e.g. when phage or plasmid protein mimics DNA

(McMahon et al. 2009)). Either kind of equivalence suggests that the functions

shared by the various PE entities are significant for the sustainable functioning of

entities within the microbial world, since the functions have evolved, and

presumably have been selected for, on more than one occasion.

An interesting empirical question to explore is whether the number of PE-entities

increases over evolutionary time. Are PE-entities favoured by selection as providing

resources that can be used in diverse ways or should one, rather, expect natural

selection to find, eventually, the unique entity that best serves each particular

biological function? In the case of the flu virus mimicking histones with another

protein (Marazzi et al. 2012), the evolution of histones preceded that of its mimic,

suggesting that processual equivalence has evolved in relatively recent time.

Hypotheses about the lineages, the environments and the functions in which

processual equivalence is more common could also be used to delineate crucial

features underlying the diversity of the microbial world. These features could then

help to identify the entities that humans could most effectively target in their

attempts to control, or counteract, pathogens in the microbial world.

Moonlighting, or PV-, entities raise different types of questions. Their flexibility,

their ability to act in diverse and distinct causal chains, suggests the hypothesis that

PV-entities are ancient generalists with high evolvability, which has contributed to

the success of a wide range of lineages. Alternatively, however, such entities could

be quite recent evolutionary innovations in the microbial world, an idea that seems

at least plausible, since the evolution of single entities able to fulfil multiple distinct

roles can be advantageous in terms of cellular economy. These competing
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123



possibilities suggest the desirability of scientific research programmes that try to

quantify the prevalence of versatility among known entities, in order to test whether

some higher level entities are particularly rich in ‘‘moonlighting’’ lower level

entities (for example, whether there exist species particularly well equipped with

multifunctional proteins).

The distribution of PV-entities might be relevant to investigation of the

biogeographical distribution of microbial entities. It could encourage investigation

of whether moonlighting entities are required to explain the wide distribution of

microbial kinds: if ‘everything is everywhere, but the environment selects’ (Baas-

Becking 1934, cited in O’Malley 2008), moonlighting entities might be selected

more frequently than other kinds. A higher proportion of versatile components

would indeed enable related organisms to be successful in a wide range of different

environments and consortia. Further, when entities move between higher level

entities (for example genes moving between genomes) the moonlighting potential of

the lower level entity might prove crucial in explaining the success of the entity in

being viable or advantageous in new contexts, and hence globally successful. Of

course, these two classes of entities, PE and PV are not mutually exclusive. Two

entities may be processually equivalent in one context, whereas each of them may

be capable of performing quite different functions in other contexts, and hence may

be processually versatile.

Stabilized entities could raise even more fundamental questions for evolutionary

microbiology. In fact, stabilisation is not really a problem for a standard ontology,

because this ontology assumes the stability of entities. By contrast, in our extended

ontology the evolution of stabilisation (and of mechanisms of stabilisation) in the

microbial world becomes a major issue. In the example of integrated cyanophage

and cyanobacterial communities, in which entities from at least three levels of

biological organisation are involved, stabilisation is not achieved just by one

particular entity, or at a single level. While cyanobacteria certainly need to limit the

infection rate by cyanophages, an absolute end to the genetic exchanges with these

phages might be detrimental. Questions of stabilisation concern fine-tuning of the

interactions between these entities through which their stability is optimized.

Recognition of such stabilized entities might then inspire a more general search for

mechanisms facilitating stabilisation (e.g. non homologous repair systems able to

integrate foreign genes in genomes without killing the host (Weller et al. 2002;

Shuman and Glickman 2007)), and lead to investigations of how these mechanisms

are distributed, and how eventually they can be moderated or bypassed (to prevent

integration, or slow down the rate of evolution of an entity).

More fundamentally, however, the consideration of stabilisation processes in the

microbial world indicates that the entities scientists work with are only relatively

stable, their stability being dependent on the processes that sustain the functional

integration of their parts. This observation has an important practical consequence

on questions of origins, such as for instance the origin of eukaryotes or the origin of

microbial species. Answers to such questions should not be phrased in terms of

stable entities: there is no such thing as the first eukaryote, or the first representative

of a particular species. There is, however, a process through which a certain level of

stabilised functional integration is eventually reached (Lawrence and Retchless
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2010). In the process of stabilisation that leads to a new kind of entity (and which

happens at variable rates for different entities), we could have no way to distinguish

the putative first entity from the entity one generation before. It would also be

crucial to study the time scales of the stabilisation of the (relatively stable)

phenotypes that are analyzed by evolutionary biologists (e.g. the stabilisation of the

eukaryotic organisation from the initial merger of distinct prokaryotic partners, the

stabilisation of a particular metabolic pathway, etc.).

Conclusion

In this paper we have called for a more expansive evolutionary ontology for

microbiology and a more egalitarian treatment of the diverse kinds of entities and

processes familiar in the mainstream of microbiology, but sometimes downplayed in

importance due to excessive concern with the specific perspective of vertical

inheritance. We have also sketched a mode of representation that could facilitate the

move away from a narrowly phylogenetic framework for biology generally. While

the phylogenetic framework usually relies on a tree-based representation, we

suggested that networks could provide a broader framework, in particular because

these latter graphs can represent both cyclic and acyclic relationships, and do not

assume that all entities under study are connected. Even if one does not want to

endorse all aspects of the ontological expansion we propose, our network model

might still offer a powerful alternative to the more traditional evolutionary

framework. Underlying these proposals is an exploration of the sometimes

fundamental implications of taking seriously the idea that biology is, or at least

can be usefully conceived as, process all the way down. One motivation for

advocating this perspective is that it allows us to raise a wide variety of important

questions that do not readily arise within a more traditional ontological framework.

Indeed, many of these questions would simply not make sense in the context of the

traditional evolutionary ontology. They could, however, lead to the discovery of

general features crucial for the maintenance of the microbial world, flexible features

central to explaining the success of diverse lineages of entities, and mechanisms that

facilitate the integration of lower level entities into a higher level entity. The ideas

we propose are likely to be regarded as controversial; but we think that the potential

payoffs that they might offer are sufficiently impressive to make the attempt to

explore them in more detail worth the effort.
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123



Alperovitch-Lavy A, Sharon I, Rohwer F, Aro EM, Glaser F, Milo R, Nelson N, Beja O (2011)

Reconstructing a puzzle: existence of cyanophages containing both photosystem-I and photosystem-

II gene suites inferred from oceanic metagenomic datasets. Environ Microbiol 13(1):24–32

Bapteste E, Burian RM (2010) On the need for integrative Phylogenomics, and some steps toward its

creation. Biol Philos 25:711–736

Bapteste E, Susko E, Leigh J, Ruiz-Trillo I, Bucknam J, Doolittle WF (2008) Alternative methods for

concatenation of core genes indicate a lack of resolution in deep nodes of the prokaryotic phylogeny.

Mol Biol Evol 25(1):83–91

Bapteste E, O’Malley MA, Beiko RG, Ereshefsky M, Gogarten JP, Franklin-Hall L, Lapointe FJ, Dupré J,
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Dupré J, O’Malley MA (2007) Metagenomics and biological ontology. Stud Hist Philos Biol Biomed Sci

38:834–846

Ereshefsky M, Pedroso M (2012) Biological individuality: the case of biofilms. Biol Philos. doi:

10.1007/s10539-012-9340-4

Towards a processual microbial ontology

123

http://dx.doi.org/10.1073/pnas.1206541109
http://dx.doi.org/10.1093/molbev/mss236
http://dx.doi.org/10.1007/s10539-012-9340-4


Falkowski PG, Fenchel T, Delong EF (2008) The microbial engines that drive earth’s biogeochemical

cycles. Science 320(5879):1034–1039

Fondi M, Fani R (2010) The horizontal flow of the plasmid resistome: clues from inter-generic similarity

networks. Environ Microbiol 12(12):3228–3242

Forterre P (2010) Defining life: the virus viewpoint. Orig Life Evol Biosph 40(2):151–160

Gevers D, Cohan FM, Lawrence JG, Spratt BG, Coenye T, Feil EJ, Stackebrandt E, Van de Peer Y,

Vandamme P, Thompson FL, Swings J (2005) Opinion: re-evaluating prokaryotic species. Nat Rev

Microbiol 3(9):733–739

Ghigo JM (2001) Natural conjugative plasmids induce bacterial biofilm development. Nature

412(6845):442–445

Godfrey-Smith PG (2009) Darwinian populations and natural selection. Oxford University Press, Oxford

Greenblum S, Turnbaugh PJ, Borenstein E (2012) Metagenomic systems biology of the human gut

microbiome reveals topological shifts associated with obesity and inflammatory bowel disease. Proc

Natl Acad Sci USA 109(2):594–599

Gross J, Bhattacharya D (2010) Uniting sex and eukaryote origins in an emerging oxygenic world. Biol

Direct 5:53

Grube M, Hawksworth DL (2007) Trouble with lichen: the re-evaluation and re-interpretation of thallus

form and fruit body types in the molecular era. Mycol Res 111(Pt 9):1116–1132

Hackett JD, Yoon HS, Li S, Reyes-Prieto A, Rummele SE, Bhattacharya D (2007) Phylogenomic analysis

supports the monophyly of cryptophytes and haptophytes and the association of rhizaria with

chromalveolates. Mol Biol Evol 24(8):1702–1713

Hall-Stoodley L, Costerton JW, Stoodley P (2004) Bacterial biofilms: from the natural environment to

infectious diseases. Nat Rev Microbiol 2(2):95–108

Hatfull GF, Cresawn SG, Hendrix RW (2008) Comparative genomics of the mycobacteriophages:

insights into bacteriophage evolution. Res Microbiol 159(5):332–339

Hellweger FL (2009) Carrying photosynthesis genes increases ecological fitness of cyanophage in silico.

Environ Microbiol 11(6):1386–1394

Henderson B, Martin A (2011) Bacterial moonlighting proteins and bacterial virulence. Curr Top

Microbiol Immunol. doi:10.1007/82_2011_188

Hildebrand F, Meyer A, Eyre-Walker A (2010) Evidence of selection upon genomic GC-content in

bacteria. PLoS Genet 6(9):e1001107

Huberts DH, van der Klei IJ (2010) Moonlighting proteins: an intriguing mode of multitasking. Biochim

Biophys Acta 1803(4):520–525

Hull DL (1989) The metaphysics of evolution. SUNY:Press, Albany

Kav AB, Sasson G, Jami E, Doron-Faigenboim A, Benhar I, Mizrahi I (2012) Insights into the bovine

rumen plasmidome. Proc Natl Acad Sci USA 109(14):5452–5457

Kloesges T, Popa O, Martin W, Dagan T (2011) Networks of gene sharing among 329 proteobacterial

genomes reveal differences in lateral gene transfer frequency at different phylogenetic depths. Mol

Biol Evol 28(2):1057–1074

Koehler J, Woetzel N, Staritzbichler R, Sanders CR, Meiler J (2009) A unified hydrophobicity scale for

multispan membrane proteins. Proteins 76(1):13–29

Koonin EV, Martin W (2005) On the origin of genomes and cells within inorganic compartments. Trends

Genet 21(12):647–654

Lane CE, Archibald JM (2008) The eukaryotic tree of life: endosymbiosis takes its TOL. Trends Ecol

Evol 23(5):268–275

Lawrence JG, Retchless AC (2010) The myth of bacterial species and speciation. Biol Philos 25:569–588

Levins R (1984) The strategy of model-building in population biology. In: Sober E (ed) Conceptual issues

in evolutionary biology, 1st edn. MIT Press, Cambridge, pp 18–27

Lima-Mendez G, Van Helden J, Toussaint A, Leplae R (2008) Reticulate representation of evolutionary

and functional relationships between phage genomes. Mol Biol Evol 25(4):762–777

Lopez P, Bapteste E (2009) Molecular phylogeny: reconstructing the forest. C R Biol 332(2–3):171–182

Lozupone CA, Hamady M, Cantarel BL, Coutinho PM, Henrissat B, Gordon JI, Knight R (2008) The

convergence of carbohydrate active gene repertoires in human gut microbes. Proc Natl Acad Sci

USA 105(39):15076–15081

Lukjancenko O, Wassenaar TM, Ussery DW (2010) Comparison of 61 sequenced Escherichia coli

genomes. Microb Ecol 60(4):708–720

Mallet J, The Heliconius Genome Consortium (2012). Butterfly genome reveals promiscuous exchange of

mimicry adaptations among species. Nature (published online) doi: 10.1038/nature11041

E. Bapteste, J. Dupré

123

http://dx.doi.org/10.1007/82_2011_188
http://dx.doi.org/10.1038/nature11041


Marazzi I, Ho JS, Kim J, Manicassamy B, Dewell S, Albrecht RA, Seibert CW, Schaefer U, Jeffrey KL,

Prinjha RK, Lee K, Garcia-Sastre A, Roeder RG, Tarakhovsky A (2012) Suppression of the antiviral

response by an influenza histone mimic. Nature 483(7390):428–433

Martin W, Embley TM (2006) Eukaryotic evolution, changes and challenges. Nature 430:623–630

Martin W, Müller M (1998) The hydrogen hypothesis for the first eukaryote. Nature 392(6671):37–41

Mayr E (1963) Animal species and evolution. Harvard University Press, Cambridge

McMahon SA, Roberts GA, Johnson KA, Cooper LP, Liu H, White JH, Carter LG, Sanghvi B, Oke M,

Walkinshaw MD, Blakely GW, Naismith JH, Dryden DT (2009) Extensive DNA mimicry by the

ArdA anti-restriction protein and its role in the spread of antibiotic resistance. Nucleic Acids Res

37(15):4887–4897

Medini D, Donati C, Tettelin H, Masignani V, Rappuoli R (2005) The microbial pan-genome. Curr Opin

Genet Dev 15(6):589–594

Mitchell SD (2003) Biological complexity and integrative pluralism. Cambridge University Press,

Cambridge

Mora C, Tittensor DP, Adl S, Simpson AG, Worm B (2011) How many species are there on Earth and in

the ocean? PLoS Biol 9(8):e1001127

Moreira D, Lopez-Garcia P (1998) Symbiosis between methanogenic archaea and delta-proteobacteria as

the origin of eukaryotes: the syntrophic hypothesis. J Mol Evol 47(5):517–530

Moustafa A, Beszteri B, Maier UG, Bowler C, Valentin K, Bhattacharya D (2009) Genomic footprints of

a cryptic plastid endosymbiosis in diatoms. Science 324(5935):1724–1726

Mumford S, Anjum RL (2011) Getting causes from powers. Oxford University Press, Oxford

O’Malley MA (2008) ‘Everything is everywhere: but the environment selects’: ubiquitous distribution

and ecological determinism in microbial biogeography. Stud Hist Philos Biol Biomed Sci

39(3):314–325
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