13 research outputs found

    Diagnostic value of the head-up tilt test and the R-test in patients with syncope

    Get PDF
    The diagnostic value of the head-up tilt test (HUTT) in discovering vasovagal syndrome depends on the pre-test probability. An accurate anamnesis and clinical examination screens the patients indicated for the HUTT. In patients with unexplained syncope, the R-test is an alternative procedure to discover its cause. In our study, we evaluated the diagnostic significance of the HUTT in a group of 211 patients and of the R-test in a subgroup of 45 patients with negative HUTT results and with negative traditional Holter ECG monitoring (24 hr)

    Peripartum Cardiomyopathy

    Get PDF
    which left ventricular dysfunction and symptoms of heart failure occur in the peripartum period in previously healthy women. Incidence of PPCM ranges from 1 in 1300 to 1 in 15,000 pregnancies. The etiology of PPCM is unknown, but viral, autoimmune, and idiopathic causes may contribute. The diagnostic criteria are onset of heart failure in the last month of pregnancy or in the first 5 months postpartum, absence of determinable cause for cardiac failure, and absence of a demonstrable heart disease before the last month of pregnancy. Risk factors for PPCM include advanced maternal age, multiparity, African race, twinning, gestational hypertension, and long-term tocolysis. The clinical presentation of patients with PPCM is similar to that of patients with dilated cardiomyopathy. Echocardiography is central to diagnosis. Early diagnosis and initiation of treatment are essential to optimize pregnancy outcome. Treatment is similar to medical therapy for other forms of dilated cardiomyopathy. About half the patients of PPCM recover without complications. The prognosis is poor in patients with persistent cardiomyopathy. Persistence of disease after 6 months indicates irreversible cardiomyopathy and portends worse survival

    Motor neuron degeneration, severe myopathy and TDP-43 increase in a transgenic pig model of SOD1-linked familiar ALS

    Get PDF
    Amyotrophic Lateral Sclerosis (ALS) is a neural disorder gradually leading to paralysis of the whole body. Alterations in superoxide dismutase SOD1 gene have been linked with several variants of familial ALS. Here, we investigated a transgenic (Tg) cloned swine model expressing the human pathological hSOD1G93A allele. As in patients, these Tg pigs transmitted the disease to the progeny with an autosomal dominant trait and showed ALS onset from about 27 months of age. Post mortem analysis revealed motor neuron (MN) degeneration, gliosis and hSOD1 protein aggregates in brainstem and spinal cord. Severe skeletal muscle pathology including necrosis and inflammation was observed at the end stage, as well. Remarkably, as in human patients, these Tg pigs showed a quite long presymptomatic phase in which gradually increasing amounts of TDP-43 were detected in peripheral blood mononuclear cells. Thus, this transgenic swine model opens the unique opportunity to investigate ALS biomarkers even before disease onset other than testing novel drugs and possible medical devices

    Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

    Get PDF
    In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure fl ux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defi ned as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (inmost higher eukaryotes and some protists such as Dictyostelium ) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the fi eld understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation it is imperative to delete or knock down more than one autophagy-related gene. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways so not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field

    The Chelating Ability of Plant Polyphenols Can Affect Iron Homeostasis and Gut Microbiota

    No full text
    In the past decades, many studies have widely examined the effects of dietary polyphenols on human health. Polyphenols are well known for their antioxidant properties and for their chelating abilities, by which they can be potentially employed in cases of pathological conditions, such as iron overload. In this review, we have highlighted the chelating abilities of polyphenols, which are due to their structural specific sites, and the differences for each class of polyphenols. We have also explored how the dietary polyphenols and their iron-binding abilities can be important in inflammatory/immunomodulatory responses, with a special focus on the involvement of macrophages and dendritic cells, and how they might contribute to reshape the gut microbiota into a healthy profile. This review also provides evidence that the axes "polyphenol-iron metabolism-inflammatory responses" and "polyphenol-iron availability-gut microbiota" have not been very well explored so far, and the need for further investigation to exploit such a potential to prevent or counteract pathological conditions

    LIMIT: LIfestyle and Microbiome InTeraction Early Adiposity Rebound in Children, a Study Protocol

    No full text
    Childhood obesity is a strong predictor of adult obesity with health and economic consequences for individuals and society. Adiposity rebound (AR) is a rise in the Body Mass Index occurring between 3 and 7 years. Early adiposity rebound (EAR) occurs at a median age of 2 years and predisposes to a later onset of obesity. Since obesity has been associated with intestinal dysbiosis, we hypothesize that EAR could be related to early microbiome changes due to maternal/lifestyle changes and environmental exposures, which can increase the unhealthy consequences of childhood obesity. LIMIT is a prospective cohort study that aims at identifying the longitudinal interplay between infant gut microbiome, infant/maternal lifestyle, and environmental variables, in children with EAR vs. AR. Methods. The study evaluated 272 mother-infant pairs, enrolled at an Italian neonatal unit, at different time points (T0, at delivery; T1, 1 month; T2, 6 months; T3, 12 months; T4, 24 months; T5, 36 months after birth). The variables that were collected include maternal/infant anthropometric measurements, lifestyle habits, maternal environmental endocrine disruptor exposure, as well as infant AR. The LIMIT results will provide the basis for early identification of those maternal and infant modifiable factors on which to act for an effective and personalized prevention of childhood obesity
    corecore