59 research outputs found

    On Neutral Absorption and Spectral Evolution in X-ray Binaries

    Get PDF
    Current X-ray observatories make it possible to follow the evolution of transient and variable X-ray binaries across a broad range in luminosity and source behavior. In such studies, it can be unclear whether evolution in the low energy portion of the spectrum should be attributed to evolution in the source, or instead to evolution in neutral photoelectric absorption. Dispersive spectrometers make it possible to address this problem. We have analyzed a small but diverse set of X-ray binaries observed with the Chandra High Energy Transmission Grating Spectrometer across a range in luminosity and different spectral states. The column density in individual photoelectric absorption edges remains constant with luminosity, both within and across source spectral states. This finding suggests that absorption in the interstellar medium strongly dominates the neutral column density observed in spectra of X-ray binaries. Consequently, evolution in the low energy spectrum of X-ray binaries should properly be attributed to evolution in the source spectrum. We discuss our results in the context of X-ray binary spectroscopy with current and future X-ray missions.Comment: Accepted for publication in ApJ Letter

    Revisiting the radio/X-ray flux correlation in the black hole V404 Cyg: from outburst to quiescence

    Full text link
    We report results of Chandra X-ray and VLA radio observations of the Galactic accreting black hole V404 Cyg (GS 2023+338) in its quiescent state. V404 Cyg is detected at its faintest level of radio and X-ray emission with a 0.5-10 keV unabsorbed luminosity of 8.3 x 10^32 (d/3.5 kpc)^2 erg/s. The X-ray spectrum fit with an absorbed power-law model yields a photon index of 2.17 +/- 0.13. Contrary to previous findings, this clearly indicates that V404 Cyg undergoes - like most black holes in quiescence - a softening of its X-ray spectrum at very low luminosity compared to the standard hard state. The quiescent radio emission is consistent with the presence of self-absorbed compact jets. We have also reanalyzed archival data from the decay of the 1989 outburst of V404 Cyg in order to quantify more precisely the correlation between radio and X-ray emission in the hard state of V404 Cyg. We show that this correlation extends over five decades in X-ray flux and holds down to the quiescent state of V404 Cyg. The index of this correlation (~0.5) may suggest that synchrotron self-Compton emission is the dominant physical process at high energy in V404 Cyg. However, this index is also consistent with scale invariant jet models coupled to an inefficiently radiating accretion disc. We discuss the properties of the quiescent state of black holes and highlight the fact that some of their properties are different from the standard hard state.Comment: 7 pages, Accepted for publication in MNRA

    Quiescent X-ray variability from the neutron star transient Aql X-1

    Get PDF
    A number of studies have revealed variability from neutron star low-mass X-ray binaries during quiescence. Such variability is not well characterised, or understood, but may be a common property that has been missed due to lack of multiple observations. One such source where variability has been observed is Aql X-1. Here, we analyse 14 Chandra and XMM-Newton observations of Aql X-1 in quiescence, covering a period of approximately 2 years. There is clear variability between the epochs, with the most striking feature being a flare-like increase in the flux by a factor of 5. Spectral fitting is inconclusive as to whether the power-law and/or thermal component is variable. We suggest that the variability and flare-like behaviour during quiescence is due to accretion at low rates which might reach the neutron star surface.Comment: 8 pages, 5 figures, accepted for publication in MNRA

    The Birth of an Ultra-Luminous X-ray Source in M83

    Full text link
    A previously undetected X-ray source (L_X<10**36 erg/s) in the strongly star-forming galaxy M83 entered an ultraluminous state between August 2009 and December 2010. It was first seen with Chandra on 23 December 2010 at L_X ~ 4 10**39 ergs/s, and has remained ultraluminous through our most recent observations in December 2011, with typical flux variation of a factor of two. The spectrum is well fitted by a combination of absorbed power-law and disk black-body models. While the relative contributions of the models varies with time, we have seen no evidence for a canonical state transition. The luminosity and spectral properties are consistent with accretion powered by a black hole with M_BH ~ 40-100 solar masses. In July 2011 we found a luminous, blue optical counterpart which had not been seen in deep HST observations obtained in August 2009. These optical observations suggest that the donor star is a low-mass star undergoing Roche-lobe overflow, and that the blue optical emission seen during the outburst is coming from an irradiated accretion disk. This source shows that ultraluminous X-ray sources (ULXs) with low-mass companions are an important component of the ULX population in star-forming galaxies, and provides further evidence that the blue optical counterparts of some ULXs need not indicate a young, high-mass companion, but rather that they may indicate X-ray reprocessing.Comment: 40 pages, 7 figures, accepted for publication in Ap

    Effects of varying case definition on carpal tunnel syndrome prevalence estimates in a pooled cohort

    Get PDF
    OBJECTIVE: To analyze differences in carpal tunnel syndrome (CTS) prevalence using a combination of electrodiagnostic studies (EDSs) and symptoms using EDS criteria varied across a range of cutpoints and compared with symptoms in both ≥1 and ≥2 median nerve–served digits. DESIGN: Pooled data from 5 prospective cohorts. SETTING: Hand-intensive industrial settings, including manufacturing, assembly, production, service, construction, and health care. PARTICIPANTS: Employed, working-age participants who are able to provide consent and undergo EDS testing (N=3130). INTERVENTIONS: None. MAIN OUTCOME MEASURES: CTS prevalence was estimated while varying the thresholds for median sensory latency, median motor latency, and transcarpal delta latency difference. EDS criteria examined included the following: median sensory latency of 3.3 to 4.1 milliseconds, median motor latency of 4.1 to 4.9 milliseconds, and median-ulnar sensory difference of 0.4 to 1.2 milliseconds. EDS criteria were combined with symptoms in ≥1 or ≥2 median nerve–served digits. EDS criteria from other published studies were applied to allow for comparison. RESULTS: CTS prevalence ranged from 6.3% to 11.7%. CTS prevalence estimates changed most per millisecond of sensory latency compared with motor latency or transcarpal delta. CTS prevalence decreased by 0.9% to 2.0% if the criteria required symptoms in 2 digits instead of 1. CONCLUSIONS: There are meaningful differences in CTS prevalence when different EDS criteria are applied. The digital sensory latency criteria result in the largest variance in prevalence

    The radio/X-ray domain of black hole X-ray binaries at the lowest radio luminosities

    Get PDF
    We report on deep, coordinated radio and X-ray observations of the black hole X-ray binary XTE J1118+480 in quiescence. The source was observed with the Karl G. Jansky Very Large Array for a total of 17.5 h at 5.3 GHz, yielding a 4.8 ± 1.4 μJy radio source at a position consistent with the binary system. At a distance of 1.7 kpc, this corresponds to an integrated radio luminosity between 4 and 8 × 1025 erg s−1, depending on the spectral index. This is the lowest radio luminosity measured for any accreting black hole to date. Simultaneous observations with the Chandra X-ray Telescope detected XTE J1118+480 at 1.2 × 10−14 erg s−1 cm−2 (1–10 keV), corresponding to an Eddington ratio of ~4 × 10−9 for a 7.5 M☉ black hole. Combining these new measurements with data from the 2005 and 2000 outbursts available in the literature, we find evidence for a relationship of the form lr = α+βlX (where l denotes logarithmic luminosities), with β = 0.72 ± 0.09. XTE J1118+480 is thus the third system – together with GX339-4 and V404 Cyg – for which a tight, non-linear radio/X-ray correlation has been reported over more than 5 dex in lX. Confirming previous results, we find no evidence for a dependence of the correlation normalization of an individual system on orbital parameters, relativistic boosting, reported black hole spin and/or black hole mass. We then perform a clustering and linear regression analysis on what is arguably the most up-to-date collection of coordinated radio and X-ray luminosity measurements from quiescent and hard-state black hole X-ray binaries, including 24 systems. At variance with previous results, a two-cluster description is statistically preferred only for random errors <~0.3 dex in both lr and lX, a level which we argue can be easily reached when the known spectral shape/distance uncertainties and intrinsic variability are accounted for. A linear regression analysis performed on the whole data set returns a best-fitting slope β = 0.61 ± 0.03 and intrinsic scatter σ0 = 0.31 ± 0.03 dex

    Maternal hormonal milieu influence on fetal brain development

    Get PDF
    An adverse maternal hormonal environment during pregnancy can be associated with abnormal brain growth. Subtle changes in fetal brain development have been observed even for maternal hormone levels within the currently accepted physiologic ranges. In this review, we provide an update of the research data on maternal hormonal impact on fetal neurodevelopment, giving particular emphasis to thyroid hormones and glucocorticoids. Thyroid hormones are required for normal brain development. Despite serum TSH appearing to be the most accurate indicator of thyroid function in pregnancy, maternal serum free T4 levels in the first trimester of pregnancy are the major determinant of postnatal psychomotor development. Even a transient period of maternal hypothyroxinemia at the beginning of neurogenesis can confer a higher risk of expressive language and nonverbal cognitive delays in offspring. Nevertheless, most recent clinical guidelines advocate for targeted high-risk case finding during first trimester of pregnancy despite universal thyroid function screening. Corticosteroids are determinant in suppressing cell proliferation and stimulating terminal differentiation, a fundamental switch for the maturation of fetal organs. Not surprisingly, intrauterine exposure to stress or high levels of glucocorticoids, endogenous or synthetic, has a molecular and structural impact on brain development and appears to impair cognition and increase anxiety and reactivity to stress. Limbic regions, such as hippocampus and amygdala, are particularly sensitive. Repeated doses of prenatal corticosteroids seem to have short-term benefits of less respiratory distress and fewer serious health problems in offspring. Nevertheless, neurodevelopmental growth in later childhood and adulthood needs further clarification. Future studies should address the relevance of monitoring the level of thyroid hormones and corticosteroids during pregnancy in the risk stratification for impaired postnatal neurodevelopment.This work was supported by the grant "Doutoramento em Medicina Jose de Mello Saude 2014" by Jose de Mello Saude to AM

    The Large Observatory for x-ray timing

    Get PDF
    The Large Observatory For x-ray Timing (LOFT) was studied within ESA M3 Cosmic Vision framework and participated in the final down-selection for a launch slot in 2022-2024. Thanks to the unprecedented combination of effective area and spectral resolution of its main instrument, LOFT will study the behaviour of matter under extreme conditions, such as the strong gravitational field in the innermost regions of accretion flows close to black holes and neutron stars, and the supra-nuclear densities in the interior of neutron stars. The science payload is based on a Large Area Detector (LAD, 10 m2 effective area, 2-30 keV, 240 eV spectral resolution, 1° collimated field of view) and a WideField Monitor (WFM, 2-50 keV, 4 steradian field of view, 1 arcmin source location accuracy, 300 eV spectral resolution). The WFM is equipped with an on-board system for bright events (e.g. GRB) localization. The trigger time and position of these events are broadcast to the ground within 30 s from discovery. In this paper we present the status of the mission at the end of its Phase A study

    The LOFT mission concept: a status update

    Get PDF
    The Large Observatory For x-ray Timing (LOFT) is a mission concept which was proposed to ESA as M3 and M4 candidate in the framework of the Cosmic Vision 2015-2025 program. Thanks to the unprecedented combination of effective area and spectral resolution of its main instrument and the uniquely large field of view of its wide field monitor, LOFT will be able to study the behaviour of matter in extreme conditions such as the strong gravitational field in the innermost regions close to black holes and neutron stars and the supra-nuclear densities in the interiors of neutron stars. The science payload is based on a Large Area Detector (LAD, >8m2 effective area, 2-30 keV, 240 eV spectral resolution, 1 degree collimated field of view) and a Wide Field Monitor (WFM, 2-50 keV, 4 steradian field of view, 1 arcmin source location accuracy, 300 eV spectral resolution). The WFM is equipped with an on-board system for bright events (e.g., GRB) localization. The trigger time and position of these events are broadcast to the ground within 30 s from discovery. In this paper we present the current technical and programmatic status of the mission
    corecore