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1  | INTRODUCTION

In intrauterine life, mild and transient changes in maternal hormone levels, 
even within the currently accepted physiologic levels, can directly affect 

target gene expression profiles, which are generally involved in normal brain 
growth and maturation (Brunton & Russell, 2011; Morreale de Escobar 
et al., 2004b). Importantly, hormone effects on brain development are 
found to be time-  and dose- dependent, with exposure to abnormal levels 
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Abstract
An	adverse	maternal	hormonal	environment	during	pregnancy	can	be	associated	with	
abnormal	brain	growth.	Subtle	changes	in	fetal	brain	development	have	been	observed	
even for maternal hormone levels within the currently accepted physiologic ranges. In 
this review, we provide an update of the research data on maternal hormonal impact 
on fetal neurodevelopment, giving particular emphasis to thyroid hormones and gluco-
corticoids.	 Thyroid	 hormones	 are	 required	 for	 normal	 brain	 development.	 Despite	
serum	 TSH	 appearing	 to	 be	 the	 most	 accurate	 indicator	 of	 thyroid	 function	 in	
 pregnancy, maternal serum free T4 levels in the first trimester of pregnancy are the 
major determinant of postnatal psychomotor development. Even a transient period of 
maternal hypothyroxinemia at the beginning of neurogenesis can confer a higher risk 
of	 expressive	 language	 and	 nonverbal	 cognitive	 delays	 in	 offspring.	 Nevertheless,	
most recent clinical guidelines advocate for targeted high- risk case finding during first 
trimester of pregnancy despite universal thyroid function screening. Corticosteroids 
are determinant in suppressing cell proliferation and stimulating terminal differentia-
tion,	a	fundamental	switch	for	the	maturation	of	fetal	organs.	Not	surprisingly,	intrau-
terine exposure to stress or high levels of glucocorticoids, endogenous or synthetic, 
has a molecular and structural impact on brain development and appears to impair 
cognition	and	 increase	anxiety	and	 reactivity	 to	stress.	Limbic	 regions,	 such	as	hip-
pocampus and amygdala, are particularly sensitive. Repeated doses of prenatal corti-
costeroids seem to have short- term benefits of less respiratory distress and fewer 
serious	 health	 problems	 in	 offspring.	 Nevertheless,	 neurodevelopmental	 growth	 in	
later childhood and adulthood needs further clarification. Future studies should ad-
dress the relevance of monitoring the level of thyroid hormones and corticosteroids 
during pregnancy in the risk stratification for impaired postnatal neurodevelopment.
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outside	the	critical	period	having	limited	impact	(Auyeung,	Lombardo,	&	
Baron-	Cohen,	2013).	Some	fetal	hormonal	axes	are	particularly	suscep-
tible to long- term programming effects that can persist throughout life 
and result in impaired brain growth, altered behavior, and increased sus-
ceptibility to chronic disease (such as metabolic and psychiatric disease). 
Nevertheless,	long-	term	effects	reflect	an	activation	or	fine-	tuning	of	the	
early organization of the brain. Epigenetic mechanisms may underlie such 
consequences that, in some cases, are only evident in subsequent genera-
tions	(Auyeung	et	al.,	2013;	Cottrell	&	Seckl,	2009;	Harris	&	Seckl,	2011).	
In this review, we will provide an update of the research data on maternal 
hormonal impact on fetal neurodevelopment, giving particular emphasis 
to thyroid hormones and glucocorticoids, for which the relevance for fetal 
neurodevelopment is well established, the body of published scientific ev-
idence is robust, and clinical guidelines are already available for hormonal 
replacement in particular circumstances. In addition, there is a known cross 
talk between these two axes that has already started to be described and 
is thought to be of relevance in the womb. To facilitate the comprehension 
of the topic, the influence of each of these hormones will be discussed 
separately	and	a	final	integrative	analysis	will	be	provided.	A	final	glimpse	
on the influence of maternal sex steroids, oxytocin, and melatonin on fetal 
neurodevelopment will also be given.

2  | THYROID HORMONES

2.1 | Thyroid hormone axis: Ontogeny, metabolism, 
and molecular signaling in the developing brain

Activation	 of	 the	 thyroid	 hormone	 axis	 follows	 the	 production	 of	
thyrotropin-	releasing	 hormone	 (TRH)	 at	 the	 hypothalamus	 and	

stimulation	 of	 thyrotropin	 (TSH)	 release	 from	 the	 pituitary.	 TSH	 in	
turn increases prohormone thyroxine (T4) production and, to a lesser 
extent, its active counterpart, tri- iodothyronine (T3). Both T4 and T3 
feedback	to	inhibit	excessive	TSH	production	(Fisher,	Dussault,	Sack,	
&	Chopra,	1976).	During	the	first	half	of	pregnancy,	maternal	thyroid	
hormone production and iodine requirements increase. Total T4, free 
T4, and T4 binding globulin are expected to increase, mainly after 
week	7	of	gestation,	while	TSH	is	expected	to	decrease	because	of	the	
thyrotropic activity of elevated circulating human chorionic gonado-
tropin	(hCG)	concentrations.	In	the	second	and	third	trimesters,	serum	
TSH	gradually	increases,	but	the	TSH	reference	interval	remains	lower	
than	in	nonpregnant	women	(Haddow,	Knight,	Palomaki,	McClain,	&	
Pulkkinen,	2004;	Stricker	et	al.,	2007).	Several	studies	reported	ges-
tational age- specific reference intervals for maternal thyroid function 
tests	 (Lazarus	 et	al.,	 2012;	 Springer,	 Bartos,	 &	 Zima,	 2014;	 Vaidya	
et	al.,	2007;	Yang	et	al.,	2014).	Serum	TSH	seems	to	be	the	most	ac-
curate indicator of thyroid status in pregnancy, despite substantial 
population	 differences	 in	 the	 TSH	upper	 reference	 limit	 (Alexander	
et	al.,	2017;	De	Groot	et	al.,	2012).	Recent	studies	 identified	only	a	
slight	decrease	in	the	upper	reference	range	of	TSH	after	week	7–12	
of	gestation.	Additionally,	a	low	but	detectable	TSH	in	the	first	trimes-
ter of pregnancy is likely not clinically significant, as increased levels 
of	serum	hCG	directly	stimulate	thyroid	hormone	production	and	pro-
mote	a	negative	feedback	on	TSH	secretion	(Alexander	et	al.,	2017).	
The	 American	 Thyroid	 Association	 recommends	 using	 population-	
based, trimester- specific reference ranges for thyroid function deter-
mination	in	pregnancy	(Alexander	et	al.,	2017).	Notwithstanding,	TSH	
levels may differ widely, mainly in the first trimester of pregnancy, 
according to several factors such as women parity, iodine status, and 

Free T4 Each laboratory should establish method and 
trimester- specific reference ranges

Optimal	method:	LC/MS/MS,	although	time-	
consuming, expensive, and not widely available

Automated	immunoassays	most	widely	used,	but	
usually overestimate free T4 levels

Free T4 index (“adjusted T4”) Appears	to	be	reliable	during	pregnancy

Total T4 × T3 resin uptake ratio (T3 ratio)

Total T4 May be superior to free T4 measurements in 
pregnant women

Multiply	the	nonpregnant	total	T4	range	(5–12	μg/dl 
or	50–150	nmol/L)	by	1.5-	fold	after	week	16

Between	weeks	7–16	of	pregnancy,	the	upper	
reference range is calculated by increasing the 
nonpregnant	upper	reference	limit	by	5%	per	week

TSH More accurate indicator of thyroid status in 
pregnancy

After	week	7	of	gestation,	the	lower	reference	range	
of	TSH	can	be	reduced	~0.4	mU/L	and	the	upper	
reference	range	is	reduced	~0.5	mU/L	(TSH	upper	
reference	limit	of	4.0	mU/L)

Gradual	return	toward	the	nonpregnant	range	in	the	
second and third trimesters

TABLE  1 Thyroid function tests in 
pregnancy
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body	 mass	 index	 (Laurberg,	 Andersen,	 Hindersson,	 Nohr,	 &	 Olsen,	
2016).	This	will	eventually	 lead	 to	misclassification	and,	possibly,	 to	
incorrect therapeutic institution when using standardized reference 
ranges. The different thyroid function tests available for determina-
tion in pregnancy are shown in Table 1.

Critical amounts of maternal T3 and T4 must be supplied across 
the placenta to the fetus to ensure the correct neurodevelopment 
throughout	ontogeny.	Detection	of	T4	and	T3	in	the	human	cerebral	

cortex has been described by week 12 of gestation (Figure 1; Morreale 
de	Escobar	et	al.,	2004b;	Morreale	de	Escobar,	Obregón,	&	Escobar	del	
Rey, 2007). Thyroid hormone transport and metabolism were shown 
to be important for thyroid hormone availability and actions in the 
fetal	brain	(Landers	&	Richard,	2017).	In	humans,	thyroid	hormones	are	
delivered	to	the	brain	mainly	through	cerebral	circulation	(blood–brain	
barrier),	with	a	smaller	fraction	(about	20%)	being	transported	through	
the	choroid	plexus	(Bernal,	2015).	Several	thyroid	hormone	membrane	

F IGURE  1  (a) The relative 
concentrations of maternal cortisol and 
free thyroid hormones during pregnancy; 
(b) important time points in the ontogeny 
of fetal cortisol and thyroid hormone 
function and metabolism; (c) time- specific 
actions	of	HPA	and	HPT	axes	on	fetal	brain	
development. Figure adapted from Patel 
et al., 2011
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transporters have been described; however, the most relevant are 
monocarboxylate transporter 8 (Mct8), with affinity for both T3 and 
T4,	and	organic	anion	 transporter	1C1	 (OATP1C1),	which	has	much	
higher	selectivity	for	T4	(Landers	&	Richard,	2017;	Figure	2).	 In	fact,	
developing human brain is relatively impermeable to T3, with about 
80%	of	T3	 in	 the	cerebral	 cortex	being	produced	by	 local	deiodina-
tion	of	 free	T4	 (Faustino	&	Ortiga-	Carvalho,	2014;	Guadaño-	Ferraz,	
Obregón,	 St	Germain,	&	Bernal,	 1997;	Figure	2).	Briefly,	 after	being	
taken up by astrocytes, T4 is deionized to T3 by deiodinase type 2 
and,	posteriorly,	T3	is	exported	through	MCT8	transporter	(Guadaño-	
Ferraz	et	al.,	1997;	Roti,	Fang,	Green,	Emerson,	&	Braverman,	1981).	
Oligodendrocytes	and	neurons	use	the	same	transporter	for	uptake	of	
T3	 (Heuer	et	al.,	2005).	Deiodinase	type	3,	highly	expressed	 in	neu-
rons, is positively regulated by thyroid hormone and protects different 
brain regions from untimely or excessive T3 levels, by converting T4 
to	the	biologically	inactive	reverse	T3	(Crantz,	Silva,	&	Larsen,	1982;	
Landers	&	Richard,	2017;	Figure	2).

All	these	findings	emphasize	the	need	for	maternal	T4	levels	to	be	
maintained within strict levels to ensure normal fetal brain develop-
ment	until	maturation	of	fetal	thyroid	gland	(by	week	11–12)	and	thy-
roid	hormone	secretion	(around	week	16);	(Obregon,	De	Oña,	Calvo,	
Escobar del Rey, & Morreale de Escobar, 1991). Even after onset of 
fetal thyroid secretion, human data show that maternal transfer still 
represents	about	30%–60%	of	fetal	serum	T4	and	continues	to	have	
an important protective role in fetal neurodevelopment until birth 
(Morreale	de	Escobar	et	al.,	2004b;	Vulsma,	Gons,	&	de	Vijlder,	1989).

The majority of thyroid hormone actions in brain development are 
mediated through the binding of T3 to nuclear thyroid hormone re-
ceptors, which are highly expressed in oligodendrocytes and neurons, 
and act as transcription factors that modulate the expression of target 
genes (Bradley, Towle, & Young, 1992). There are two thyroid recep-
tor genes encoding three proteins with full thyroid hormone receptor 
function	at	the	genomic	 level	 (Iskaros	et	al.,	2000).	Despite	 isoform-	
specific roles, their main actions largely overlap. Thyroid hormone 

receptors are already expressed in human brain by the 10th week of 
gestation, with a several fold increase in expression within the follow-
ing weeks (Figure 1). There is also a distinct spatial expression pattern 
of each isoform during cortex development, with prominent expres-
sion in cerebellum and in the germinal trigone and cortical ventricular 
layer, where neuroblast proliferation takes place (Bradley, Young, & 
Weinberger, 1989; Bradley et al., 1992; Chatonnet, Picou, Fauquier, & 
Flamant, 2011). Recent evidence has also described nongenomic ac-
tion of thyroid hormones via integrin avb3, a cell membrane receptor 
(Stenzel	&	Huttner,	2013).

The molecular mechanisms by which thyroid hormones affect fetal 
neurological structures are still not fully understood. In neural cells, 
it	 is	 estimated	 that	 around	5%	of	 all	 expressed	genes	 are	under	T3	
control,	mostly	by	direct	regulation	at	transcriptional	level	(Gil-	Ibanez,	
Bernal,	&	Morte,	2014).	Nevertheless,	influence	of	thyroid	hormones	
in gene regulation can also be accomplished at post- transcriptional 
level,	 by	 affecting	 proteins	 involved	 in	 RNA	 stability	 and	 splicing	
(Aniello,	Couchie,	Bridoux,	Gripois,	&	Nunez,	1991;	Bernal,	2015).

Thyroid hormone is required early in pregnancy for normal neu-
rogenesis, neuronal migration, neuronal and glial cell differentia-
tion,	myelination,	 and	 synaptogenesis	 (Bernal,	 2017;	 Eayrs,	 1953;	
Lavado-	Autric	et	al.,	2003).	 In	 fact,	 thyroid	hormones	were	shown	
to modify expression of genes associated with cell cycle and intra-
cellular	 signaling	 (E2F1,	 p53,	 cyclins,	 and	 cyclin-	dependent	 kinase	
inhibitors), cytoskeleton organization (actin and microtubule polym-
erization), and extracellular matrix contents (laminin, fibronectin, 
and several adhesion molecules), which are involved in neurogenesis 
and	neuronal	migration	(Bernal,	2017;	Farwell	&	Dubord-	Tomasetti,	
1999;	 Iglesias	et	al.,	1996;	Koibuchi,	Jingu,	 Iwasaki,	&	Chin,	2003;	
Leonard	&	Farwell,	1997;	Lin	et	al.,	2004;).	Neurogenin	2	and	Reelin	
are also proteins involved in neuron development and neuronal mi-
gration which expression has also been proven to be modulated by 
thyroid	hormones	(Dong	et	al.,	2009;	Pathak,	Sinha,	Mohan,	Mitra,	&	
Godbole,	2011).	In	animal	and	cell	culture	models,	thyroid	hormone	

F IGURE  2 Thyroid hormone transport 
and metabolism between placenta and 
fetal	brain	in	humans.	DIO3	activity	in	
placenta is up to 400 times greater than 
that	of	DIO2,	and	the	most	relevant	thyroid	
hormone membrane transporter in humans 
is MCT8 transporter. Thyroid hormones are 
delivered to the brain mainly through the 
blood–brain	barrier	(BBB)	with	a	smaller	
fraction	(about	20%)	being	transported	
through the choroid plexus. Fetal brain is 
mainly dependent on circulating T4 levels, 
with	80%	of	T3	in	the	cerebral	cortex	being	
produced by local deiodination of free T4 in 
astrocytes.	DIO,	deiodinase;	BBB,	blood–
brain barrier
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treatment after traumatic brain injury or hypoxic event significantly 
increased,	 mainly	 on	 cortex,	 the	 expression	 of	 mRNA	 from	 Bcl2,	
VEGFA,	Sox2,	and	neurotropin,	which	are	important	genes	for	neu-
ronal	 survival	 and	neurogenesis	 (Li	 et	al.,	 2017).	Thyroid	hormone	
can also influence oligodendrocyte differentiation, which has an 
important	impact	on	the	process	of	myelination	(Schoonover	et	al.,	
2004). Indeed, thyroid hormone affects the expression of almost 
all myelin protein genes, particularly those encoding the structural 
proteins (proteolipid protein, myelin basic protein and myelin associ-
ated	glycoprotein);	(Sutcliffe,	1988).	Additionally,	thyroid	hormones	
lead to changes in the expression of nuclear- encoded mitochon-
drial cytochrome c oxidase subunits and mitochondrial- encoded 
mRNAs,	 such	 as	 12S	 and	 16S	RNAs,	 thereby	 affecting	mitochon-
drial morphology and function, namely, electron transport chain 
processing	 (Vega-	Núñez,	 Menéndez-	Hurtado,	 Garesse,	 Santos,	 &	
Perez-	Castillo,	1995).

2.2 | Maternal thyroid dysfunction and fetal and 
postnatal neurodevelopment

The role of thyroid hormone in postnatal brain development has been 
extensively studied, and this effort resulted in the prevention, by neo-
natal screening, of severe neurological deficits, including profound 
neurological impairment and mental retardation, in children with 
congenital	hypothyroidism	 (Delange,	1997).	The	 importance	of	 thy-
roid hormone to fetal brain development has been less characterized, 
but it is well established that maternal thyroid status is also intricately 
involved	 in	 the	 developing	 fetal	 brain	 (Eayrs,	 1953;	 Lavado-	Autric	
et	al.,	 2003;	 Patel,	 Landers,	 Li,	Mortimer,	 &	 Richard,	 2011;	 Stenzel	
&	Huttner,	2013).	Maternal	 thyroid	dysfunction	generally	ensues	 in	
response to several factors such as iodine deficiency, environmental 
endocrine	disrupters,	or	 intrinsic	 thyroid	diseases	 (Min	et	al.,	2015).	
World	Health	Organization	(WHO)	has	declared	that	iodine	deficiency	
is, after starvation, the single most important cause of preventable 
brain damage, by affecting thyroid function (Morreale de Escobar 
et	al.,	2007;	WHO,	2007).	Although	severe	 iodine	deficiency	almost	
no longer exists, due to widespread programs of dietary iodine supple-
mentation (in bread, milk, water, or salt), mild iodine deficiency is still 
a public health concern, either in developing countries and in Western 
industrialized nations, with Europe having the highest proportion (al-
most	 57%)	 of	 general	 population	with	 an	 insufficient	 iodine	 intake	
(World	 Health	 Organization/International	 Council	 for	 the	 Control	
of	 the	 Iodine	Deficiency	Disorders/United	Nations	 Children’s	 Fund	
(WHO/ICCIDD/UNICEF),	 2007).	 The	 most	 vulnerable	 groups	 are	
pregnant and lactating women and their developing fetuses and neo-
nates, given the outstanding importance of iodine to ensure adequate 
levels of thyroid hormones for brain development and maturation.

Increasing body of evidence suggests that a “fetal programming” 
effect, which explains the association between environmental adver-
sity during pregnancy and later development of disease, may drive 
offspring of women with thyroid dysfunction susceptible to later 
onset	of	neurodevelopmental	disorders	(Andersen,	Carlé,	Karmisholt,	
Pedersen,	&	Andersen,	 2017;	 Barker,	Winter,	Osmond,	Margetts,	&	

Simmonds,	 1989).	 Unfortunately,	 all	 human	 studies	 addressing	 the	
association between maternal thyroid status in pregnancy and child 
neurodevelopment are observational and challenged by some meth-
odological concerns. It is worth noting the heterogeneity between 
studies regarding thresholds used to define thyroid dysfunction sub-
groups, gestational age at assessment, length of follow- up period, and 
tools	 for	 the	assessment	of	child	neurodevelopment.	Due	 to	ethical	
issues, randomized controlled trials are few and have been conducted 
only	with	child	IQ	(Casey,	2016;	Lazarus,	2010;	Lazarus	et	al.,	2012).

In humans, the most severe and adverse effect of maternal thyroid 
dysfunction on fetal brain development is the neurological symptoms 
of endemic cretinism associated with severe maternal hypothyroidism 
(Chen	&	Hetzel,	2010).	Nevertheless,	several	other	neurodevelopmen-
tal deficits have been described for more moderate forms of mater-
nal thyroid dysfunction, particularly during the first half of pregnancy 
(Henrichs,	Ghassabian,	Peeters,	&	Tiemeier,	2013;	Moog	et	al.,	2017).

In	 large	Danish	 population-	based	 studies,	maternal	 thyroid	 dys-
function first time diagnosed after birth was associated with a sig-
nificant	risk	of	epilepsy	during	childhood	(Andersen,	Laurberg,	Wu,	&	
Olsen,	2013).	The	 same	authors	 concluded	 that	maternal	 hyperthy-
roidism diagnosed after the birth of the child increased the risk of 
attention- deficit/hyperactivity disorder during childhood, whereas 
hypothyroidism increased the risk of autism spectrum disorder 
(Andersen,	Laurberg,	Wu,	&	Olsen,	2014).

Additionally,	 two	 early	 observational	 studies	 demonstrated	 that	
offspring of women with asymptomatic thyroid dysfunction were at 
increased	 risk	 of	 impaired	 neurodevelopment	 (Hollowell,	 Garbe,	 &	
Miller,	 1999;	 Pop	 et	al.,	 1999).	 Particularly,	 Hollowell	 et	al.	 (1999),	
in	 a	 large	 case–control	 study,	 demonstrated	 that	 offspring	 of	 un-
treated	 hypothyroid	women,	 at	 7–9	years	 of	 age,	 performed	worse	
on	 all	 the	 15	 neuropsychological	 tests	 assessing	 intelligence,	 atten-
tion,	language,	reading	ability,	school	performance,	and	visual–motor	
performance. The detrimental effect of subclinical hypothyroidism 
on	fetal	neurocognitive	development	 is	 less	clear.	Nevertheless,	ma-
ternal hypothyroxinemia, frequently due to mild iodine deficiency, 
is one leading cause of preventable neurodevelopmental handicaps. 
Hypothyroxinemia	consists	of	 low	T4	 levels	 in	maternal	serum	(gen-
erally	defined	as	total	T4	 levels	below	100	nmol/L	and	free	T4	con-
centrations	in	the	lower	2.5th–5th	percentile	of	the	reference	range),	
with	T3	and	TSH	levels	within	normal	range	(Alexander	et	al.,	2017).	
Briefly, insufficient iodine intake promotes increased synthesis of T3, 
instead	of	T4,	leading	to	reduced	iodine	demand,	while	keeping	TSH	
levels	within	normal	range.	Although	this	adaptation	is	advantageous	
for the mother, maternal thyroid hormone supply to the fetus can be 
compromised as T4 is the main thyroid hormone crossing the placenta 
and entering the fetal brain. Maternal hypothyroxinemia represents a 
paradigm of how an innocuous and asymptomatic endocrine maternal 
status, hardly diagnosed in clinical practice, can have a lifetime impact 
on the fetus intellectual performance.

Costeira et al. (2010) found an incidence of isolated hypothyrox-
inemia	of	almost	2.6%	in	a	population	of	Portuguese	pregnant	women	
reported to be iodine- deficient. Pop et al. (2003) described that 
the strongest isolated predictor of infant mental development was 
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mother’s	free	T4	levels	at	12	weeks	of	gestation,	and	the	lowest	de-
velopmental scores were observed in the children of mothers whose 
free T4 levels were low in the first trimester and decreased further 
over	 pregnancy.	 Similarly,	 Costeira	 et	al.	 assessed	 the	 psychomotor	
development of the progeny of women from a moderately iodine- 
deficient area and found that maternal serum free T4 levels in the 
first trimester of pregnancy were the major determinant of psycho-
motor development at 18 and 24 months. Children born from mothers 
with	 free	T4	 levels	<25th	percentile	 (<10	pg/ml),	which	represented	
approximately	25%	of	the	sample,	had	an	odds	ratio	of	2.1	for	mild-	
to- severe delay (Costeira et al., 2011). It is important to highlight that, 
despite increased risk of children with developmental delay, a consid-
erable amount of these women had free T4 levels within the currently 
accepted	physiologic	range.	Human	studies	performed	only	in	the	sec-
ond half of pregnancy have found no association between maternal 
hypothyroxinemia	and	children	cognitive	outcomes	until	60	months	of	
age, as well as language and motor scores at age 24 months (Chevrier 
et al., 2011; Craig et al., 2012).

The	 Generation	 R	 Study,	 involving	 3,659	 children	 and	 their	
mothers, reported a neurodevelopmental index more than one stan-
dard deviation below the mean in one of every two offspring from 
women with first trimester free T4 below the 10th percentile (1 in 
20	births),	resulting	in	a	1.5-	fold	to	twofold	increased	risk	of	adverse	
cognitive	 findings	 at	3	years	of	 age	 (Henrichs	et	al.,	 2010).	 In	 this	
study, both mild and severe maternal hypothyroxinemia were asso-
ciated with a higher risk of expressive language delay, and severe 
maternal hypothyroxinemia also predicted a higher risk of nonver-
bal cognitive delay. These findings are supported by previous stud-
ies	 showing	 similar	 relationships	 (Li	 et	al.,	 2010;	 Pop	 et	al.,	 2003;	
Velasco et al., 2009). Two other prospective studies, performed 
within	 the	 Generation	 R	 birth	 cohort	 in	 the	Netherlands,	 investi-
gated the relationship between maternal thyroid function and chil-
dren	 IQ	at	6	years,	as	well	as	different	brain	structural	changes	at	
8	years.	One	study	reported	that	children	of	mothers	that	had	been	
hypothyroxinemic in early pregnancy scored 4.3 points IQ lower than 
controls	without	differences	in	brain	morphology	(Ghassabian	et	al.,	
2014). The other study, within the same cohort, found that, after the 
exclusion of women with overt hypothyroidism and overt hyperthy-
roidism, both low and high maternal free thyroxine concentrations 
during pregnancy were associated with lower child IQ and lower 
gray	matter	and	cortex	volume	(Korevaar	et	al.,	2016).	Maternal	TSH	
was not related to the cognitive outcomes nor brain morphology. 
Brain structural changes were also described for more pronounced 
levels of maternal thyroid dysfunction. Particularly, small studies 
from Canada reported reduced hippocampal volumes, abnormal de-
velopment of corpus callosum, and abnormal cortical morphology 
in	children	aged	9–14	years	born	to	women	who	were	treated	with	
levothyroxine during pregnancy for previously or newly detected hy-
pothyroidism	 (Lischinsky,	Skocic,	Clairman,	&	Rovet,2016;	Samadi,	
Skocic,	&	Rovet,	2015;	Willoughby,	McAndrews,	&	Rovet,	2014).

The neuroanatomical and functional consequences of maternal 
thyroid dysfunction during early development have been character-
ized	 in	 animal	models.	As	 an	 example,	 in	 rodents,	maternal	 thyroid	

hormone deficiency resulted in a reduced neural progenitor pool in 
the ventricular zone (Mohan et al., 2012). The abnormal neurogene-
sis may be attributed, at least in part, to the oxidative damage and 
deteriorated antioxidant defense system induced by the hypothyroid 
state	 (Ahmed,	 Ahmed,	 El-	Gareib,	 El-	Bakry,	 &	Abd	 El-	Tawab,	 2012).	
Maternal hypothyroidism during pregnancy also limited dendritic and 
axonal growth, and induced abnormal neuronal location and synaptic 
impairment	 (Farwell,	 Dubord-	Tomasetti,	 Pietrzykowski,	 Stachelek,	 &	
Leonard,	2005;	Opazo	et	al.,	2008).	Even	a	moderate	transient	period	
of maternal hypothyroxinemia at the beginning of rat neurogenesis can 
promote an abnormal neuronal migration pattern, causing alterations 
in histogenesis and cytoarchitecture of the somatosensory cortex, hip-
pocampus, and cerebellum that could be prevented by timely infusion 
of	T4.	Delayed	 infusion	beyond	 the	critical	 period	of	 corticogenesis	
was	of	no	benefit	(Lavado-	Autric	et	al.,	2003).	In	fact,	third	trimester	
or early postnatal correction of the low circulating T4, which is usually 
effective in preventing most neurological damage in congenital hypo-
thyroidism, does not reverse the structural deficits caused by maternal 
hypothyroxinemia because most of the consequences have become 
permanent by the end of the second trimester (Morreale de Escobar, 
Obregón,	&	Escobar	del	Rey,	2004a;	Morreale	de	Escobar	et	al.,	2004b;	
Zoeller,	2003).	To	what	extent	must	maternal	T4	levels	decline	before	
effects on cortical structure are observed and what measures of thy-
roid function should be taken to best determine the health of the fetus 
are still unanswered questions. These structural abnormalities might 
have a postnatal functional impact. Indeed, hypothyroidism during 
the fetal period has been associated with the impairment of spatial 
learning	and	memory	in	rat	offspring	(Shafiee,	Vafaei,	&	Rashidy-	Pour,	
2016).	Additionally,	subcortical	band	heterotopia,	a	class	of	neuronal	
migration error, was associated with increased sensitivity to seizures 
in offspring of female rats exposed to a goitrogen during pregnancy 
(Gilbert,	Ramos,	McCloskey,	&	Goodman,	2014).

2.3 | Treatment options and guidelines

Thyroid dysfunction in pregnancy is a relevant issue as thyroid disease 
is the second most common endocrine disorder affecting women at 
reproductive	age	(ACOG,	2002).	Notwithstanding,	screening	pregnant	
women for thyroid dysfunction remains controversial (Costeira et al., 
2010;	Granfors	et	al.,	2014).	The	American	Thyroid	Association	guide-
lines	 recommended	 a	 case	 finding–screening	 strategy	 in	 pregnancy	
(Alexander	 et	al.,	 2017;	 Table	2).	 However,	 the	 Endocrine	 Society	
Committee for 2012 guidelines could not reach agreement with re-
gard to screening recommendations for all newly pregnant women 
(De	Groot	 et	 al.,	 2012).	 Some	members	 advocated	 for	 routine	TSH	
determination during the first trimester of pregnancy, whereas others, 
with a lower grade of evidence, supported aggressive case finding to 
identify and test high- risk women.

In fact, despite the absence of large randomized trials demon-
strating the benefit of routine screening of thyroid dysfunction during 
pregnancy, according to Vaidya et al. (2007), an aggressive case finding 
approach is known to miss about one- third of women with overt and 
subclinical	thyroid	disease.	Several	authors	share	similar	results	(Casey	
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&	de	Veciana,	2014;	 Li	 et	al.,	 2010;	Negro	et	al.,	 2010;	Wang	et	al.,	
2011).

The critical question is whether thyroid replacement would ben-
efit pregnant women identified with milder thyroid dysfunction and 
their offspring, particularly concerning children neurological devel-
opment.	Some	observational	 studies	have	suggested	 the	benefit	of	
treatment	 (Li	 et	al.,	 2010;	 Negro	 et	al.,	 2006),	 but	 conversely,	 the	
larger	 Controlled	 Antenatal	 Thyroid	 Screening	 (CATS)	 randomized	
controlled trial demonstrated that thyroxine replacement in women 
with	isolated	high	TSH	or	isolated	low	free	T4	levels	had	no	impact	
on	 cognitive	 function	 in	 children	 evaluated	 at	 3	years	 old	 (Lazarus,	
2010;	Lazarus	et	al.,	2012).	Another	multicenter	randomized	placebo-	
controlled clinical trial, the Randomized Trial of Thyroxine Therapy for 
Subclinical	Hypothyroidism	or	Hypothyroxinemia	Diagnosed	During	
Pregnancy,	selected	677	women	with	subclinical	hypothyroidism	and	
526	women	with	 isolated	 maternal	 hypothyroxinemia	 to	 T4	 treat-
ment or placebo, showing no significant effect of treatment on off-
spring	IQ	at	the	age	of	5	years	(Casey,	2016).	Therefore,	these	results	
provide evidence against treatment of subclinical hypothyroidism and 
hypothyroxinemia to improve neurocognitive outcomes in offspring. 
Nevertheless,	both	studies	initiated	T4	replacement	at	the	end	of	the	
first trimester or later, which may be too late to have a significant 
impact on neurodevelopment. Two randomized trials evaluating the 
effect of T4 replacement upon fetal neurodevelopment are currently 
in	progress.	Meanwhile,	according	 to	American	Thyroid	Association	
guidelines, T4 replacement is recommended for women with overt 
and subclinical hypothyroidism. Thyroid hormone replacement with 
T3 or T4 + T3 combinations should be avoided for the treatment of 
maternal	hypothyroidism	during	pregnancy	 (Alexander	et	al.,	2017).	
In comparison with human thyroid hormone concentrations, those 
preparations have supraphysiologic levels of T3 that can lead not 
only to maternal adverse effects but also to an insufficient transfer 
of	maternal	T4	to	the	fetal	brain.	Despite	management	of	maternal	
hypothyroxinemia being controversial and requiring further study, 
the panel suggests this condition should not be routinely treated 
in	 pregnancy	 (weak	 recommendation);	 (Alexander	 et	al.,	 2017).	 In	
fact, it should be kept in mind that, until more consistent evidence 

is available on the impact of maternal hyperthyroidism on fetal neu-
rodevelopment, the advisability of T4 replacement in cases of milder 
maternal thyroid hormone deficiency, such as hypothyroxinemia, 
should be cautious.

Concerning the high prevalence of iodine- deficient intake world-
wide, several health societies recommend that all women who are 
planning to be pregnant, are pregnant or breastfeeding, should sup-
plement	their	diet	daily	with	an	oral	supplement	containing	150	μg of 
iodine	 (Alexander	 et	al.,	 2017;	De	Groot	 et	 al.,	 2012;	World	Health	
Organization/International	 Council	 for	 the	 Control	 of	 the	 Iodine	
Deficiency	Disorders/United	Nations	Children’s	Fund	(WHO/ICCIDD/
UNICEF),	2007).

In conclusion, identification of maternal thyroid dysfunction during 
pregnancy is particularly important in the first trimester when fetal thy-
roid hormones rely exclusively on the mother. It negatively impacts on 
the psychomotor development and intelligence coefficient of the off-
spring,	even	for	TSH	levels	within	range	for	pregnancy.	Nevertheless,	
many clinicians and researchers agree that establishing reference 
ranges for thyroid hormones during pregnancy is required for proper 
monitoring (Table 3). In contrast to hypothyroid spectrum disorders 
(overt hypothyroidism, subclinical hypothyroidism, and hypothyroxin-
emia), studies assessing the relationship between maternal hyperthy-
roidism and fetal neurodevelopmental outcomes are still limited.

3  | GLUCOCORTICOIDS

3.1 | Hypothalamus–pituitary–adrenal axis: 
ontogeny, metabolism, and molecular signaling in the 
developing brain

Glucocorticoids	 are	 steroid	 hormones	 with	 an	 essential	 role	 in	
fetal development and maturation, as well as in adult homeostasis 
(Liggins,	 1976).	 The	 limbic	 system,	mainly	 through	 the	 hippocam-
pus,	sends	an	inhibitory	input	to	the	paraventricular	nucleus	(PVN)	
of	the	hypothalamus,	by	activation	of	GABAergic	neurons.	This	re-
sults in increased production and release of corticotropin- releasing 
hormone	(CRH)	and,	to	a	lesser	extent,	arginine	vasopressin	(AVP),	
which act on the anterior pituitary to stimulate adrenocorticotropic 
hormone	 (ACTH)	 production	 and	 release	 (Edwards	 &	 Burnham,	
2001). In response, there is an increase in glucocorticoid release by 
the adrenal glands that feedback at the level of the hippocampus, 
hypothalamus,	and	pituitary	to	inhibit	HPA	axis	activity	and	prevent	
excessive	production	of	 stress	hormones	 (Cottrell	&	Seckl,	2009).	
The human fetal adrenal gland is active from very early gestation 
onward, but adrenal cortisol is only produced in appreciable quanti-
ties	after	22	weeks	of	gestation	(Liggins,	Kennedy,	&	Holm,	1967;	
Weinstock, Matlina, Maor, Rosen, & McEwen, 1992); (Figure 1). 
Thus, in early gestation, cortisol of maternal origin represents the 
primary source of cortisol and correlates strongly with fetal com-
partment levels, with cortisol increasing over the three trimesters 
(Harris	&	Seckl,	2011);	(Figure	1).

During	pregnancy,	several	changes	in	maternal	and	fetal	HPA	axis	
are	observed.	Different	studies	have	focused	on	the	role	of	cortisol	in	

TABLE  2 Risk factors for thyroid dysfunction in pregnancy

Age	>	30	years

Family history of autoimmune thyroid disease or thyroid dysfunction

History	of	hypothyroidism/hyperthyroidism	or	current	symptoms/
signs of thyroid dysfunction

Known	thyroid	antibody	positivity	or	the	presence	of	a	goiter

History	of	head	or	neck	radiation	or	prior	thyroid	surgery

Personal	history	type	1	DM	or	other	autoimmune	disorders

History	of	pregnancy	loss,	preterm	delivery,	or	infertility

Multiple	prior	pregnancies	(≥2)

Morbid	obesity	(BMI	≥	40	kg/m2)

Use	of	amiodarone	or	lithium,	or	recent	administration	of	iodinated	
radiologic contrast

Residing in an area of known moderate to severe iodine insufficiency
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the coordination of fetal readiness for extrauterine life and the timing 
of	 parturition	 (Liggins	 et	al.,	 1967;	McDonald	 &	Nathanielsz,	 1991;	
Wood	 &	 Keller-	Wood,	 2016).	 Human	 placenta	 produces	 CRH	 and	
ACTH	 that	 are	delivered	 into	 fetal	 and	maternal	 circulation	 (Goland	
et	al.,	1993).	Placental	CRH	production	increases	over	gestation	and,	
in contrast to the negative feedback actions of glucocorticoids on cen-
tral	CRH	expression,	placental	production	of	CRH	is	enhanced	by	glu-
cocorticoids, creating a positive feedback loop that enhances maternal 
and	 fetal	 CRH,	 ACTH,	 and	 cortisol	 production,	 mainly	 in	 the	 third	
trimester	 of	 pregnancy	 (King,	 Smith,	 &	 Nicholson,	 2001;	 Marinoni,	
Korebrits,	Di	Iorio,	Cosmi,	&	Challis,	1998;	Robinson,	Emanuel,	Frim,	&	
Majzoub, 1988). In fact, maternal cortisol levels increase almost four-
fold	during	pregnancy	 (Davis	&	Sandman,	2010).	Corticosteroids	act	
by	suppressing	cell	proliferation	and	DNA	replication	and	stimulating	
terminal	 differentiation	 (Liggins,	 1976).	These	 effects	 are	 of	 utmost	
importance in late gestation for the maturation of fetal organ systems, 
such as lung, liver, skeletal muscle, kidney, and central nervous sys-
tem	 (Ballard	 &	 Ballard,	 1972;	 Liggins,	 1976;	Wood	 &	 Keller-	Wood,	
2016).	Nevertheless,	these	maturation	processes	are	performed	at	the	
expense of general slowing of somatic growth (Fowden & Forhead, 
2011;	McDonald	&	Nathanielsz,	1991).

Particularly, the developing brain is extremely sensitive to neuro-
chemical, structural and molecular corticosteroid stress hormone ef-
fects (Meyer, 1983; Yehuda, Fairman, & Meyer, 1989). The ontogeny 
of corticosteroid receptors in the brain and the development of feed-
back control have been studied primarily in rats (Edwards & Burnham, 
2001). Corticosteroids reach the brain and interact with two types of 
receptors, the mineralocorticoid receptors (MR) and the glucocorti-
coid	receptors	(GR)	which,	upon	ligand	binding	in	the	cytoplasm,	act	
as transcription factors in the nucleus, either by direct interaction with 
DNA	recognition	sites	(glucocorticoid	response	elements)	or	through	
interaction with other transcription factors, in the promoter region of 
target	genes	 (Groeneweg,	Karst,	de	Kloet,	&	Joëls,	2011;	Reul	&	de	
Kloet,	1985).

Although	with	an	 important	overlap,	MR	and	GR	show	different	
localization patterns in the brain and bind to different sets of genes, 
exhibiting a coordinated and often antagonistic mode of action 
(Edwards & Burnham, 2001). Particularly, MR are almost restricted 
to neurons in limbic areas, such as prefrontal cortex, amygdala, and, 

mainly,	 hippocampus	 (Groeneweg	 et	al.,	 2011).	 In	 contrast,	 GR	 are	
widely distributed and highly expressed in placenta and brain, both in 
glia cells and neurons, with particular emphasis in the hippocampus, 
PVN,	and	pituitary	corticotrophs	(Diaz,	Brown,	&	Seckl,	1998;	Edwards	
&	Burnham,	2001;	Reul	&	de	Kloet,	1985).	In	rats,	MR	start	to	be	ex-
pressed in late gestation and are found at adult levels by the end of the 
first	week	of	life,	while	GR	are	expressed	from	midgestation	onward,	
reaching	adult	levels	by	about	the	first	month	of	life	(Diaz	et	al.,	1998;	
Reul	&	de	Kloet,	1985).	A	detailed	analysis	of	the	ontogeny	of	corti-
costeroid receptors expression in the human fetal brain has not been 
reported. MR have a 10- fold higher affinity for circulating endogenous 
glucocorticoids	than	GR	and	are	therefore	responsible	for	the	mainte-
nance	of	basal	HPA	activity,	while	GR	signal	mainly	during	acute	stress	
(Funder,	1997;	Reul	&	de	Kloet,	1985).	With	prolonged	stress,	chronic	
activation	of	GR	promotes	alteration	 in	 the	number	of	hippocampal	
and	hypothalamic	GR,	thereby	modifying	feedback	regulation	of	the	
HPA	axis	(Towle,	Sze,	&	Lauder,	1982).	Importantly,	although	endoge-
nous	glucocorticoids	can	bind	both	GR	and	MR,	synthetic	glucocorti-
coids	are	more	selective	and	bind	almost	exclusively	to	GR	(De	Kloet,	
Fitzsimons,	Datson,	Meijer,	&	Vreugdenhil,	2009;	Joëls,	Karst,	DeRijk,	
&	de	Kloet,	2008).

Target	genes	of	HPA	axis	include	several	functional	classes	of	genes	
involved in energy metabolism, neuronal cell division and plasticity, 
cytoskeletal	remolding,	vesicle	dynamics,	and	cell	adhesion	(Antonow-	
Schlorke,	Schwab,	Li,	&	Nathanielsz,	2003;	Datson,	Morsink,	Meijer,	&	
de	Kloet,	2008;	Fukumoto,	Morita,	Mayanagi,	&	Tanokashira,	2009).	
Corticosteroids effects are often mediated by epigenetic changes in 
several	 genes,	 through	 DNA	methylation	 and	 specific	 histone	 resi-
due acetylation, and by synaptic plasticity (Murgatroyd et al., 2009; 
Weaver et al., 2007).

Besides delayed genomic effects of corticosteroids in the devel-
oping brain, mediated by transcriptional regulation, evidence also 
supports the presence of rapid nongenomic corticosteroid effects me-
diated	by	cell	membrane	receptors	 (Drake,	Tang,	&	Nyirenda,	2007).	
Several	 studies	 have	 shown	 that	 membrane-	associated	 G	 protein-	
coupled	receptors	and	the	signal-	regulated	kinase–CREB	pathway	may	
be	involved	on	the	activation	of	neurons	in	limbic	areas	(Groeneweg	
et al., 2011). The same downstream signaling cascades also seem to be 
activated by other steroids, such as estrogens, androgens, and proges-
terone	(Groeneweg	et	al.,	2011;	Levin,	2008).

Glucocorticoids	metabolism	 is	also	of	 relevance	concerning	 fetal	
exposure	to	these	hormones.	Human	placenta	expresses	the	enzyme	
11β- hydroxysteroid dehydrogenase types 1 and 2 (11β-	HSD1	and	11β- 
HSD2),	which	interconvert	cortisol	and	cortisone.	As	the	predominant	
reaction is the placental inactivation of active glucocorticoids (cortisol) 
to their inactive 11- keto forms (cortisone) by 11β-	HSD2,	fetuses	are	
usually protected from the relatively high maternal glucocorticoid lev-
els	during	pregnancy	(Liggins,	1976).	Nevertheless,	some	of	the	corti-
sone synthesized during transplacental exchange is converted back to 
cortisol	in	target	tissues,	including	brain	(Wood	&	Keller-	Wood,	2016).	
During	late	gestation,	11β-	HSD2	placental	expression	decreases,	ex-
posing the fetus to increasing levels of glucocorticoids and facilitating 
fetal	maturation	(Cottrell,	Seckl,	Holmes,	&	Wyrwoll,	2014);	(Figure	1).	

TABLE  3 Thyroid hormones: Issues on debate

Understand	the	molecular	mechanisms	by	which	thyroid	hormones	
affect fetal neurodevelopment

Determine	reference	ranges	for	thyroid	hormones	during	pregnancy	
and the most informative parameters

Clarify the detrimental effect of maternal subclinical hypothyroidism 
and hyperthyroidism on fetal neurocognitive development

Establish cutoff points of free T4 to define hypothyroxinemia and the 
levels of maternal T4 below which negative effects on brain 
structure are observed

Elucidate the impact of routine screening of thyroid dysfunction and 
hormone replacement of pregnant women with milder thyroid 
dysfunction on their offspring neurodevelopment outcome
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Importantly, synthetic glucocorticoids, such as dexamethasone and 
betamethasone, are not subject to substantial inactivation by placen-
tal 11β-	HSD	and,	unlike	endogenous	glucocorticoids,	they	do	not	bind	
to	corticosteroid	binding	globulin	(Murphy	et	al.,	2007;	Singh,	Cuffe,	&	
Moritz, 2012). These mechanisms, associated with selective binding of 
exogenous	glucocorticoids	to	GR,	exacerbate	the	effects	of	exogenous	
corticosteroid administration on fetal development.

In addition to corticosteroids, other hormones such as catechol-
amines, vasopressin, and oxytocin are released upon stress situations 
and may affect brain development and function (Vargas- Martínez, 
Uvnäs-	Moberg,	 Petersson,	 Olausson,	 &	 Jiménez-	Estrada,	 2014;	
Wyrwoll	&	Holmes,	2012).	However,	evidence	is	still	scarce	concern-
ing their impact on placental function and fetal development. It is 
plausible that these substances may have a role in susceptibility to 
later disease by modifying placental and fetal 11β-	HSD	levels,	nutrient	
transport,	or	GR	expression.

3.2 | Maternal HPA axis dysfunction and fetal and 
postnatal neurodevelopment

Exposure to high levels of stress during pregnancy is associated with 
elevated	 maternal	 and	 fetal	 plasma	 corticosteroid	 levels	 (Hompes	
et al., 2012). Fetal corticosteroid levels may rise as a result of direct 
maternal	 transfer	 across	 the	 placenta,	 maternal	 CRH	 stimulation	
of	 fetal	HPA	axis,	 or	 as	 a	 consequence	of	maternal	 glucocorticoid-	
stimulated	placental	CRH	production,	which	activates	fetal	HPA	axis.	
Evidence in humans and animals indicates that intrauterine expo-
sure to stress or its glucocorticoid hormone mediators, endogenous 
or synthetic, has negative impact on brain development (Buss et al., 
2012;	Pryce	et	al.,	2005;	Pryce,	2008),	although	individual	brain	areas	
may only be vulnerable after certain threshold (magnitude or dura-
tion	 of	 hypercortisolism)	 has	 been	 reached.	 A	 “fetal	 programming”	
effect,	with	 resetting	 of	HPA	 axis,	 is	 thought	 to	 underlie	 these	 ef-
fects	(Moisiadis	&	Matthews,	2014a,	2014b;	Waffarn	&	Davis,	2012).	
Long-	lasting	deficits	 in	 cognitive,	 affective,	 as	well	 as	 addictive	be-
haviors have been associated with prenatal contact to maternal stress 
and	 glucocorticoids	 excess.	 Schizophrenia,	 attention-	deficit/hyper-
activity disorder, antisocial behavior, increased vulnerability to post- 
traumatic stress disorder, anxiety disorders, learning difficulties, and 
depression were already reported to have an association with prena-
tal	 glucocorticoid	excess	 (Barbazanges,	Piazza,	 Le	Moal,	&	Maccari,	
1996;	Buss	et	al.,	2012;	Chrousos	&	Kino,	2009;	Wyrwoll	&	Holmes,	
2012).

Several	animal	studies	have	focused	these	prenatal	glucocorticoid-	
induced behavioral deficits. In utero glucocorticoid exposure in rats 
induced pronounced anhedonic behavior and impairment in social 
interaction in both juvenile and adult animals (Borges et al., 2013a, 
2013b).	 High-	dose	 antenatal	 corticotherapy	 also	 induces	 deficits	 in	
fear memory, triggers anxiety- like behavior, increases drug- seeking 
behavior,	 and	 impairs	 the	 animal’s	 resilience	 to	 stress	 in	 adulthood	
(Oliveira	et	al.,	2006,	2012;	Rodrigues	et	al.,	2012).	In	contrast	to	syn-
thetic glucocorticoids, milder phenotypes were seen in the natural 
glucocorticoid group, probably due to inactivation of corticosterone 

in	the	placenta	(Oliveira	et	al.,	2006).	These	long-	lasting	emotional	and	
social behaviors were associated with a profound reduction in meso-
limbic	 dopaminergic	 transmission	 (Borges,	 Coimbra,	 Soares-	Cunha,	
Miguel	 Pêgo	 et	al.,	 2013;	 Borges,	 Coimbra,	 Soares-	Cunha,	Ventura-	
Silva	et	al.,	2013).	The	behavioral	deficits	and	reduced	dopamine	levels	
in	nucleus	accumbens	and	amygdala	were	both	reversed	by	L-	DOPA	
administration	(Rodrigues	et	al.,	2011).	Some	of	these	behavioral	traits	
were correlated with neuroanatomical changes. Particularly, fear con-
ditioning and hyperanxiety were associated with increased volume 
of the bed nucleus of the stria terminalis due to increased dendritic 
length while opposite effects were seen in the amygdala that pre-
sented	reduced	volume	due	to	significant	dendritic	atrophy	(Oliveira	
et	al.,	2012).	Leão	et	al.	and	Rodrigues	et	al.	had	already	reported	neu-
roanatomical changes in rats exposed to dexamethasone during late 
gestation, such as significant reduced volume and cell number in the 
nucleus accumbens, as well as impoverished dopaminergic innervation 
of	this	limbic	structure	by	the	ventral	tegmental	area	(Leão	et	al.,	2007;	
Rodrigues	et	al.,	2011).	Altogether,	these	findings	suggest	a	close	link	
and interplay between glucocorticoids/stress, impaired behavior, and 
dopaminergic tone. In fact, some of the behavioral disorders that have 
been associated with prenatal stress or manipulation of the maternal 
glucocorticoid milieu are related to dopaminergic transmission in the 
mesolimbic, mesocortical, and nigrostriatal systems (e.g., schizophre-
nia, drug addiction, and, possibly, depression); (Rodrigues et al., 2011). 
Prenatal glucocorticoid exposure was also found to modulate long- 
term activity of other neural pathways, particularly the mesopontine 
cholinergic pathway which was implicated in anxious behavior and 
enhanced	stress	 reactivity	by	modulating	HPA	axis	 function	 (Borges	
et al., 2013a, 2013b). Behavior studies were also performed in pri-
mates. Particularly, repeated betamethasone administration to preg-
nant baboons resulted in impaired learning and attention disorders in 
3- year- old female offspring (Rodriguez et al., 2011).

The	molecular	mechanisms	underlying	the	resetting	of	HPA	axis,	
after endogenous or synthetic prenatal glucocorticoid exposure, have 
also been extensively studied. Clear key roles of epigenetic changes in 
CRH,	intracellular	GR	and	MR,	11β-	HSD1,	and	11β-	HSD2	have	been	
established	 (Avishai-	Eliner,	 Eghbal-	Ahmadi,	 Tabachnik,	 Brunson,	 &	
Baram,	2001;	Diaz	et	al.,	1998;	Waffarn	&	Davis,	2012).	Some	of	the	
epigenetic alterations were also found to occur in primordial germ cell 
formation, which can persist through fertilization and development 
of	 the	 subsequent	 generation	 (Cottrell	 &	 Seckl,	 2009;	 Moisiadis	 &	
Matthews, 2014a, 2014b).

Chronic glucocorticoid excess upregulates 11β-	HSD1	 in	 the	hip-
pocampus and peripheral metabolic organs increasing local and sys-
temic	glucocorticoid	levels	 in	rodents	(Shoener,	Baig,	&	Page,	2006).	
Additionally,	evidence	in	rat	and	human	trophoblasts	shows	that	ma-
ternal undernutrition or other types of stress that culminate in hypoxia, 
high catecholamines, and inflammatory cytokines levels can paradox-
ically downregulate placental 11β-	HSD2,	 exposing	 the	 fetus	 to	 ex-
cessive amounts of glucocorticoids (Chisaka, Johnstone, Premyslova, 
Manduch,	 &	 Challis,	 2005;	 Homan,	 Guan,	 Hardy,	 Gratton,	 &	 Yang,	
2006;	 Mairesse	 et	al.,	 2007).	 Differential	 expression	 levels	 of	 the	 
11β-	HSD2	enzyme	correlate	with	different	patterns	of	methylation	of	
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the promoter and coding regions of this gene in human cells in vitro 
and	in	rats	in	vivo	(Alikhani-	Koopaei,	Fouladkou,	Frey,	&	Frey,	2004).

Studies	in	rodents	show	that	prefrontal	cortex	and	limbic	regions,	
such as hippocampus and amygdala, seem to be particularly sensitive 
to exposure to stress or high levels of glucocorticoids by a mechanism 
dependent	on	GR	expression,	which	mediate	most	of	the	detrimental	
effects	of	glucocorticoids	(Buss	et	al.,	2012;	Diaz	Heijtz,	Fuchs,	Feldon,	
Pryce,	&	Forssberg,	2010).	As	an	example,	deficiency	of	placental	11β- 
HSD2	reduces	hippocampal	GR	expression,	while	increases	amygdala	
GR	mRNA	levels	(Welberg,	Seckl,	&	Holmes,	2000).	Low	hippocampal	
GR	seem	to	reduce	glucocorticoid	negative	feedback	and	lead	to	ex-
aggerated	HPA	responses	to	stress	and	an	increased	anxiety-	like	be-
havior	 in	adulthood.	On	the	other	hand,	 increased	GR	expression	 in	
the amygdala is associated with an anxiogenic phenotype (Welberg 
et al., 2000). Conversely, high levels of maternal care lead to increased 
GR	mRNA	expression	in	the	hippocampus	and	prefrontal	cortex	and	
reduced	HPA	axis	responses,	resulting	in	lower	plasma	glucocorticoid	
levels	and	a	less	anxious	phenotype	as	adults	(Liu	et	al.,	1997).	In	fact,	
postnatal events, such as maternal care and handling, can probably 
reverse the prenatal stress- induced low levels of hippocampal cortico-
steroid receptors through epigenetic mechanisms that involve thyroid 
hormone release and activation of serotoninergic pathways to the hip-
pocampal	region	of	the	brain,	restoring	GR	expression	and	recovery	of	
HPA	function	(Meaney,	Aitken,	&	Sapolsky,	1987;	Weaver	et	al.,	2007).	
These alterations in postnatal brain corticosteroid receptor expression 
patterns and behavior phenotype support the use of postnatal inter-
ventions	to	reverse	modified	HPA	activity	induced	by	prenatal	expo-
sure to endogenous or synthetic glucocorticoids.

CRH	 has	 also	 been	 appointed	 as	 a	 direct	 mediator	 of	 early-	life	
stress	 on	 later	 cognitive	 and	 behavioral	 outcomes.	High	 concentra-
tions	of	CRH	are	found	 in	situations	of	maternal	stress	and	growth-	
retarded	fetuses	(Weinstock	et	al.,	1992;	Weinstock,	2005).	Handling	
of	neonatal	 rat	pups	 reduced	hypothalamic	CRH	expression	and	 re-
duced stress- induced glucocorticoid release, enhancing hippocampal 
GR	expression	 in	adult	animals,	 in	a	well-	defined	sequence	(Avishai-	
Eliner et al., 2001).

Besides	molecular	alterations	in	key	elements	of	HPA	axis,	remarkable	
brain structural changes have been described after in utero exposure to 
elevated levels of glucocorticoids, as already discussed above. Evidence 
on rodents and nonhuman primates showed that prenatal stress, excess 
exogenous glucocorticoids, and inhibition of 11β-	HSD2	have	influence	
on	 fetal	 neurogenesis	 and	 hippocampal	 anatomy	 (Lemaire,	 Koehl,	 Le	
Moal,	&	Abrous,	2000;	Schmitz	et	al.,	2002).	Coe	et	al.	(2003)	demon-
strated that moderate stress, both early and late in rhesus monkey preg-
nancy,	resulted	in	a	10%–12%	decrease	in	hippocampal	volume,	still	not	
recovered by 2 years postpartum. They also have described an inhibition 
of neurogenesis in the dentate gyrus and disturbed size and shape of 
the	corpus	callosum.	Administration	of	single	and	repeated	courses	of	
corticosteroids to pregnant sheep and rhesus monkeys retarded fetal 
brain growth and was followed by a reduction in brain weight at term 
that	persisted	into	adulthood	(Huang	et	al.,	1999;	Moss	et	al.,	2005;	Uno	
et al., 1990). These findings are highly relevant as they provide evidence 
for	a	brain	structure–function	relationship.

The consequences of prenatal stress/glucocorticoid exposure in 
humans are not so well known; however, evidence suggests some 
overlapping	 findings	 with	 preclinical	 studies.	 Higher	 maternal	 cor-
tisol levels in earlier human gestation were associated with a larger 
right amygdala volume and more affective problems in girls, including 
anxious behavior and exaggerated stress reactivity (Buss et al., 2012). 
Children from mothers who self- report high levels of stress/anxiety 
during pregnancy (associated with high salivary cortisol levels) were 
described	 to	 have	 higher	 basal	 HPA	 axis	 activity	 and	 self-	reported	
anxiety	at	6	months,	5	years,	and	10	years	of	age,	as	well	as	behav-
ioral problems and impaired attention and concentration as toddlers 
(O’Connor	 et	al.,	 2005;	 Talge,	 Neal,	 &	 Glover,	 2007).	 Moreover,	 in	
human pregnancies complicated by intrauterine growth restriction, 
fetal cortisol levels are elevated at term, associating reduced fetal 
growth	rates	with	elevated	glucocorticoids	(Goland	et	al.,	1993).	The	
long- term effects of prenatal stress and glucocorticoid excess during 
pregnancy depend on timing of exposure as well as on the sex of the 
offspring	(Brunton	&	Russell,	2011;	Davis	&	Sandman,	2010).	In	fact,	
many aspects of adverse fetal programming affect more males than 
females	 (Brunton	&	Russell,	2010;	Dunn,	Morgan,	&	Bale,	2011).	 In	
humans, placenta of female fetuses may convey a relative protection 
from glucocorticoid excess due to increased glucocorticoid inactiva-
tion by feto- placental 11β-	HSD2	(Clifton	&	Murphy,	2004).

After	Liggins	and	Howie	published	the	first	randomized	controlled	
trial on the effect of exogenous glucocorticoids on human fetal neu-
rodevelopment, several studies have also been performed aiming to 
clarify the safety of antenatal corticosteroid administration to preg-
nant	women	at	risk	of	preterm	delivery	(ACOG,	2016;	NIH	Consensus	
Statement,	 2000;	 RCOG,	 2010).	 Until	 some	 years	 ago,	 the	 use	 of	
repeated	 courses	 of	 antenatal	 corticosteroids	was	widespread	 (NIH	
Consensus	Statement,	2000;	Zephyrin	et	al.,	2013).	The	detrimental	
effects of corticosteroids seem to be dose- associated, and multiple 
courses induce more severe damage than single injections of the same 
total	dose	(Uno	et	al.,	1990).	These	facts	raise	the	question	whether	
chronic although low level stress is more detrimental than an acute 
sharp trauma to fetal development. The main issue of debate concern-
ing antenatal corticosteroid therapy is the long- term effects in the 
central	nervous	 system.	Nevertheless,	 long-	term	developmental	 fol-
low- up studies in infants exposed to repeated doses of prenatal cor-
ticosteroids are limited to date and have produced conflicting results.

In	 humans,	 Multiple	 Courses	 of	 Antenatal	 Corticosteroids	 for	
Preterm	 Birth	 Study	 (MACS	 trial)	 showed	 that	 neonates	 who	 re-
ceived multiple courses of corticosteroids have significantly lower 
mean birthweight, length, and head circumference than those in 
the placebo group, despite no major improvement in neonatal out-
come	 (Murphy	 et	al.,	 2008).	 Other	 studies	 found	 similar	 results	
(Abbasi	 et	al.,	 2000;	 French,	Hagan,	 Evans,	Godfrey,	&	Newnham,	
1999). Repeated antenatal betamethasone injections were associ-
ated with a reduced cortex convolutions index and brain surface 
area in human offspring (Modi et al., 2001). These effects appear 
to be more pronounced if corticosteroids are administered during 
late gestation when growth rate is higher and thus most susceptible 
to	 the	 catabolic	 effects	 of	 steroids	 (Bloom,	 Sheffield,	McIntire,	 &	
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Leveno,	2001;	French	et	al.,	1999).	Follow-	up	studies	in	5-	year-	old	
children	 at	MACS	 trial	who	were	 exposed	 to	 repeated	 courses	 of	
antenatal	corticosteroids	and	born	≥37	weeks	showed	an	increased	
risk	 of	 neurodevelopmental/neurosensory	 impairment	 (Asztalos	
et al., 2013, 2014), while other nonrandomized studies have shown 
no	 difference	 between	 exposed	 and	 nonexposed	 children	 (Doyle,	
Kitchen,	Ford,	Rickards,	&	Kelly,	1989;	Hasbargen,	Reber,	Versmold,	
&	Schulze,	2001;	MacArthur,	Howie,	Dezoete,	&	Elkins,	1982;	Thorp	
et al., 2002).

A	2015	Cochrane	Review	concluded	that,	although	repeated	doses	
reduced the severity of neonatal lung disease, there were insufficient 
data to exclude other beneficial or harmful effects to the mother or 
infant.	Although	repeated	doses	were	associated	with	a	small	reduc-
tion in size at birth, this was not significant when adjusted for gesta-
tional	age.	No	 long-	term	benefits	or	harms	were	seen	at	18	months	
to	2	years’	corrected	age	although	only	betamethasone	was	evaluated	
(Crowther,	McKinlay,	Middleton,	&	Harding,	2015).

There are few follow- up studies on single course of antenatal 
corticosteroids exposed fetuses into childhood and adulthood but re-
sults	have	been	reassuring.	(Collaborative	Group	on	Antenatal	Steroid	
Therapy,	1984;	Dalziel	 et	al.,	 2005;	Dessens,	Haas,	&	Koppe,	2000)	
Just one small study reported neurodevelopmental delay in childhood 
(Salokorpi	et	al.,	1997)	No	major	long-	term	adverse	effects	have	been	
found on psychomotor, cognitive or neurological development, as well 
as	 on	 working	 memory,	 attention,	 or	 psychiatric	 morbidity	 (Dalziel	
et	al.,	2005;	Liggins	&	Howie,	1972).	These	results	reduced	previous	
concerns regarding decreased brain growth after antenatal corticoste-
roid	exposure	from	animal	studies	(Huang	et	al.,	1999).	Nevertheless,	
a recent Cochrane Review concluded that children with and without 
treatment had similar results for behavioral/learning difficulties and 
intellectual impairment; also, data were inconclusive about neurode-
velopmental delay in childhood and educational achievement and in-
tellectual	impairment	in	adulthood	(Roberts,	Brown,	Medley,	&	Dalziel,	
2017). Further follow- up studies in neurodevelopmental effects in 
later childhood and adulthood of single and repeated courses of ante-
natal corticosteroids are needed.

Concerning neonatal corticosteroid treatment, some deleterious 
effects were reported. Particularly, cerebral cortical gray matter vol-
ume in premature infants treated with dexamethasone was reduced 
by	 35%	when	 compared	 to	 nontreated	 infants,	 as	well	 as	 a	 signifi-
cant decrease in cerebellum volume (Modi et al., 2001; Murphy et al., 
2001;	Tam	et	al.,	2011).	Other	regions	of	the	brain	can	also	be	affected	
(Antonow-	Schlorke	et	al.,	2009;	Murmu	et	al.,	2006).

3.3 | Treatment options and guidelines

Antenatal	 corticosteroid	 therapy	 administered	 to	 women	 at	 risk	 of	
preterm delivery has brought a significant decrease in the incidence 
of	 respiratory	 distress	 syndrome	 (RDS),	 intraventricular	 hemor-
rhage	 (IVH),	 necrotizing	 enterocolitis,	 and	 overall	 neonatal	 mortal-
ity	 (ACOG,	 2016;	 NIH	 Consensus	 Statement,	 2000;	 Royal	 College	
of	 Obstetricians	 and	 Gynaecologists,	 2010).	 The	 most	 extensively	
studied	corticosteroids	for	the	prevention	of	RDS,	since	Liggins	initial	

clinical studies with sheep, are betamethasone and dexamethasone 
(Liggins,	Schellenberg,	Manzai,	Kitterman,	&	Lee,	1988;	Schellenberg,	
Liggins,	Manzai,	Kitterman,	&	Lee,	1988).	However,	fetal	exposure	to	
other synthetic glucocorticoids may occur in the setting of a variety 
of medical conditions, including asthma and autoimmune disorders. 
Additionally,	association	of	thyroid	hormones	or	TRH	to	prenatal	cor-
ticosteroids	has	been	 suggested	 to	 further	 reduce	RDS	and	neona-
tal	 lung	disease	in	preterm	infants	(Liggins	et	al.,	1988;	Schellenberg	
et	al.,	1988).	Nevertheless,	a	Cochrane	systematic	review	from	2013	
showed	 that	 prenatal	 TRH	 in	 addition	 to	 corticosteroids,	 given	 to	
women at risk of preterm birth, does not improve infant outcomes 
and	is	associated	with	maternal	side	effects	(Crowther,	Alfirevic,	Han,	
&	Haslam,	2013).

At	the	moment,	major	organizations	such	as	National	Institutes	of	
Health	 (NIH),	American	 College	 of	 Obstetricians	 and	 Gynecologists	
(ACOG),	 and	 Royal	 College	 of	 Obstetricians	 and	 Gynaecologists	
(RCOG)	recommend	a	single	course	of	antenatal	corticosteroid	treat-
ment for pregnant women between 24 and 34 weeks of gestation at 
risk	of	preterm	delivery	within	the	next	7	days	(ACOG,	2016;	Hofmeyr,	
2009;	NIH	Consensus	 Statement,	 2000;	 Roberts	 et	al.,	 2017;	 Royal	
College	of	Obstetricians	 and	Gynaecologists,	 2010).	A	 single	 rescue	
course of antenatal corticosteroids should be considered if gestational 
age is less than 34 0/7 weeks, delivery is likely to occur in the next 
7 days, and the antecedent treatment was given more than 2 weeks 
before	(ACOG,	2016).	Recently,	ACOG	published	a	Practice	Advisory,	
endorsed	 by	American	Academy	 of	 Pediatrics,	 based	 on	 findings	 of	
Antenatal	 Late	Preterm	Steroids	 (ALPS)	 trial	demonstrating	 that	 ad-
ministration of antenatal betamethasone may be of benefit for preg-
nancies, not previously exposed to antenatal corticosteroids, at high 
risk	of	late	preterm	birth	between	34	0/7	and	36	6/7	weeks	of	gesta-
tion	(ACOG,	2016;	Saccone	&	Berghella,	2016).	However,	neurodevel-
opment	outcomes	were	not	addressed	by	ALPS	trial.

The currently approved regimen doses for betamethasone and 
dexamethasone were first selected arbitrarily, but pharmacodynamic 
studies	 suggested	 that	 both	 regimens	 resulted	 in	 about	 75%–80%	
occupancy of available corticosteroid receptors, providing near max-
imal corticosteroid receptor- mediated response in fetal target tissues 
(Ballard,	Granberg,	&	Ballard,	1975).	Higher	and	more	frequent	doses	
were not shown to improve perinatal benefits and, indeed, increased 
the	 likelihood	of	 adverse	effects	 (NIH	Consensus	Statement,	2000).	
Nevertheless,	despite	effectiveness	in	reducing	most	morbidities	and	
mortality related to prematurity, there is insufficient evidence on which 
to base a strong recommendation for use of one drug over the other, 
as well as optimal dose, timing, frequency, and route of administration 
(Jobe	&	Soll,	2004).	In	a	systematic	review,	Brownfoot,	Gagliardi,	Bain,	
Middleton, and Crowther (2013) concluded that dexamethasone may 
have some benefits compared with betamethasone, such as less intra-
ventricular hemorrhage and periventricular leukomalacia and a shorter 
length	of	stay	in	the	neonatal	intensive	care	unit.	Some	concerns	have	
been raised about dexamethasone risk of poorer motor skills and co-
ordination, lower IQ scores, and an increased frequency of clinically 
significant disabilities in survivors (Brownfoot, Crowther, & Middleton, 
2008;	Lee,	Stoll,	McDonald,	&	Higgins,	2006;	Yeh	et	al.,	2004).
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In conclusion, intrauterine exposure to high levels of synthetic or 
even endogenous glucocorticoids seems to have a definitive impact on 
central nervous system development with long- term susceptibility to 
cognitive, behavior, and affective disorders. The increased reactivity 
of	the	HPA	axis	is	thought	to	underlie	these	manifestations,	although	
the exact molecular mechanisms which explain these outcomes need 
further	investigation	(Table	4).	As	far	as	possible,	the	developing	brain	
should be protected against the effects of pre-  and postnatal stress.

4  | CROSS- REGULATION OF THE THYROID 
HORMONE AND GLUCOCORTICOIDS

Although	much	 attention	 has	 been	 driven	 to	 the	 effects	 of	 stress-	
related	HPA	axis	mechanisms	on	fetal	neurodevelopment,	hypothala-
mus–pituitary–thyroid	(HPT)	axis	is	also	a	stress-	sensitive	system	and	
both axes interact with each other during fetal development (Moog 
et al., 2017). Particularly, both thyroid hormones and glucocorticoids 
mediate several maturational effects, essential for neonatal survival, 
acting synergistically to switch cell cycle from proliferation to differ-
entiation	(Bernal,	2017;	Harris	&	Seckl,	2011;	Liggins	et	al.,	1988).

In human adults, glucocorticoids generally inhibit thyroid function. 
In fact, glucocorticoid administration was shown to decrease plasma 
TSH	 levels,	 as	 well	 as	 TSH	 response	 to	 TRH	 stimulation	 (Ahlquist,	
Franklyn,	Ramsden,	&	Sheppard,	1989;	Taylor,	Flower,	&	Buckingham,	
1995).	Additionally,	depression	or	chronically	increased	cortisol	levels	
were associated with lower levels of cerebral thyroid hormones, prob-
ably due to a cortisol- related decrease in brain deiodinase 2 activity. 
Notwithstanding,	acute	stress	was	shown	to	induce	synthesis	and	se-
cretion of thyroid hormones, apparently by a mechanism involving glu-
cocorticoids	 (Hidal	&	Kaplan,	1988;	Jackson,	1998;	Nadolnik,	2012).	
Similarly,	during	fetal	development,	at	least	in	sheep	models,	maternal	
and fetal administration of glucocorticoids, during third trimester, in-
creased plasma T3 but not T4 levels, perhaps secondary to modifi-
cations in fetal thyroid hormones metabolism, namely a decrease in 
placental	deiodinase	3	activity	(Forhead	et	al.,	2007;	Thomas,	Krane,	
&	Nathanielsz,	1978).	In	fetal	central	nervous	system,	the	stimulatory	

role of glucocorticoids in thyroid hormone metabolism may be accom-
plished by means of iodine metabolism modulation, influence on deio-
dinases	activity,	and	thyroid	hormone	receptor	expression	(Nadolnik,	
2012). Whether the effect of glucocorticoids on fetal T3 levels is the 
same in early pregnancy, where fetal thyroid hormones are more de-
pendent on maternal fraction and higher expression levels of placental 
deiodinase 3 are observed, needs further investigation.

Maternal	stress,	by	activation	of	HPA	axis,	may	play	a	role	in	pre-
mature	maturation	of	fetal	HPT	axis	and	other	fetal	tissues,	by	means	
of	 an	 increase	 in	 fetal	 T3	 concentrations	 (Slone-	Wilcoxon	 &	 Redei,	
2004).	Nevertheless,	 regarding	fetal	neurodevelopment,	 in	 the	pres-
ence of maternal stress and/or chronically increased cortisol levels, 
despite the increase in fetal T3 concentrations, maternal thyroid hor-
mones most likely decrease, which means that lower levels of maternal 
T4 cross placental barrier and reach fetal brain, compromising fetal 
neurodevelopment.	Additionally,	 low	maternal	thyroid	hormones	im-
pair renal cortisol clearance and decrease its metabolism into inactive 
cortisone, apparently by decreasing 11β-	HSD2	activity.	Both	 low	T3	
and high glucocorticoids in fetal brain have a deleterious impact on 
fetal neurodevelopment, most likely in brain regions particularly vul-
nerable	to	both	hormones,	such	as	hippocampus	(Gould,	Woolley,	&	
McEwen,	1991;	Hellstrom,	Dhir,	Diorio,	&	Meaney,	2012).

On	the	other	hand,	administration	of	thyroid	hormones	to	neona-
tal	 rat	pups	stimulates	CRH,	ACTH,	and	glucocorticoid	secretion,	as	
well	as	hippocampal	GR	concentration,	which	modulates	future	HPA	
axis response to stress by enhancing glucocorticoid negative feedback 
sensitivity	 (Johnson	 et	al.,	 2013;	 Meaney	 et	al.,	 1987;	 Shi,	 Levy,	 &	
Lightman,	1994).	Furthermore,	postnatal	modulators,	such	as	mater-
nal	care,	can	regulate	HPA	axis	responses	by	means	of	T3	release	and	
increased	conversion	of	T4	to	T3	(Hellstrom	et	al.,	2012).	Thus,	high	
levels	of	thyroid	hormones	also	accelerate	HPA	axis	maturation.

In	conclusion,	disruption	of	either	HPA	or	HPT	axes	during	 fetal	
neurodevelopment can permanently program the other axis with life-
long deleterious consequences in terms of susceptibility for neurode-
velopmental diseases.

5  | OTHER MATERNAL HORMONAL 
AXIS INFLUENCE ON FETAL 
NEURODEVELOPMENT

Regardless of thyroid hormones and glucocorticoid influence in fetal 
brain growth, several other hormones have been pointed out to have 
a	role	in	fetal	neurodevelopment.	Scientific	evidence	concerning	other	
maternal hormonal axes is still limited and requires further extended 
and	 validated	 studies.	Nevertheless,	 promising	 findings	 address	 the	
effect of some maternal hormonal axes on fetal neurogenesis and later 
physiologic responses related to stress adaptation and emotion regu-
lation,	sometimes	by	interfering	with	the	HPA	axis.	Herein,	we	high-
light some evidence concerning sex steroids, oxytocin, and melatonin.

The developing brain is vulnerable to the action of sex steroids. 
Studies	 of	 the	 organizing	 effects	 of	 gonadal	 steroids	 on	 brain	 struc-
ture and behavior have been performed mainly in rodents. Concerning 

TABLE  4 Glucocorticoid	hormones:	Issues	on	debate

Understand	the	molecular	mechanisms	by	which	glucocorticoids	
affect fetal neurodevelopment

Determine	the	relationship	between	maternal	stress/anxiety	during	
pregnancy and fetal cortisol levels

Understand	the	differential	impact	on	fetal	brain	growth	of	self-	
reported maternal stress/anxiety or high maternal cortisol levels 
during pregnancy

Establish if the influence of high cortisol levels on fetal brain growth 
translates into adverse neurological outcomes in later life

Establish the long- term effects in the central nervous system of 
patients who undergone single and rescue courses of antenatal 
corticosteroids

Determine	which	exogenous	glucocorticoids	have	the	best	safety	
profile for antenatal administration
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reproductive behavior, sexual preference of a male for a female is likely 
to be controlled by the sexually dimorphic nucleus of the preoptic area 
which is differentially shaped in male and female animals by the action 
of testosterone during late embryonic life and the first days of postnatal 
life (Balthazart, 2011). Besides sexual behavior, both fetal androgens 
and estrogens have also been associated with differential growth in 
other sexually dimorphic brain areas, including prefrontal cortex, cer-
ebellum,	amygdala,	and	hippocampus	(Neufang,	Specht,	&	Hausmann,	
2009; Peper et al., 2009), explaining sex differences found in cognitive 
(Berman	et	al.,	1997)	and	affective	skills	 later	in	life	(Amin,	Epperson,	
Constable,	&	Canli,	2006;	Lombardo	et	al.,	2012).	Other	factors	contrib-
ute to sex differences in brain morphology including enzymes involved 
in sex steroids biosynthesis and metabolism, such as aromatase (Biegon 
et al., 2010). Proteins encoded on sex chromosomes and environmental 
factors	are	also	involved	(McCarthy,	Arnold,	&	Ball,	2012).	Sex	steroids	
actions may be accomplished via classical genomic receptors, as well 
as nonclassical membrane- associated receptors. In developing humans 
and rodents, sexually dimorphic brain areas were found to express high 
density	of	sex	steroid	receptors	(Takeyama	et	al.,	2001).	Specific	struc-
tural effects of prenatal androgens, estrogens, and progesterone are 
neurite outgrowth and synaptogenesis, dendritic branching, and my-
elination	(Garcia-	Segura	&	Melcangi,	2006;	Haraguchi	et	al.,	2012).	The	
precise molecular mechanisms for these hormonal effects are still being 
elucidated but include activation of programmed cell death, differential 
expression	of	transcription	factors	and	microRNAs,	DNA	methylation,	
and histone post- translational modifications of genes, including steroid 
receptors	genes	(Gore,	Martien,	Gagnidze,	&	Pfaff,	2014).	Interactions	
between sex hormones and neurotransmitters, such as serotonin, do-
pamine,	GABA,	and	glutamate	have	also	been	described	to	be	of	rele-
vance	in	animals	and	humans	(Barth,	Villringer,	&	Sacher,	2015).

Disruptions	 in	maternal	sex	steroids	production	and	metabolism,	
at critical stages in development, might influence normal fetal brain 
structure and functional outcomes, including permanent changes 
in non- reproductive behavior (Weiss, 2002). It is still controversial 
whether or not endogenous maternal sex steroids within physiologic 
range of pregnancy have an effect on fetal hormone levels. In animals, 
prenatal treatment of rats with estradiol or testosterone resulted in 
sexually dimorphic changes in social play behavior and performance 
in memory tests, as well as alteration in the size of hippocampal pyra-
midal	cells	(Auger	&	Olesen,	2009;	Isgor	&	Sengelaub,	1998).	Similarly,	
developmental exposure to estrogenic endocrine disruptors in rodents 
was associated with sexually dimorphic social and anxiety behaviors 
and learning difficulties in adolescence and adulthood (Carbone et al., 
2013;	Kundakovic	 et	al.,	 2013)	Additionally,	 fluctuations	 on	 proges-
tin levels in pregnant rats resulted in significant differences in per-
formance on hippocampal- dependent tasks in the offspring (Paris, 
Brunton, Russell, Walf, & Frye, 2011). In humans, there were observed 
sexually dimorphic effects of sex steroids on behavior, with increased 
cord sex hormones (androgens, estrogens and progesterone) affect-
ing mood and cognition (Jacklin, Wilcox, & Maccoby, 1988; Marcus, 
Maccoby,	Jacklin,	&	Doering,	1985).	Increased	levels	of	sex	hormones	
during fetal development might also predispose male children to au-
tism spectrum disorders (Malkki, 2014).

Insight into human genetic disorders, pathophysiological condi-
tions, and pharmaceutical treatments, which result in changes in the 
hormonal milieu of the mother and developing fetus, has also provided 
some knowledge about the role of prenatal sex steroids on fetal neu-
rodevelopment	 (Gore	 et	al.,	 2014).	 For	 example,	 congenital	 adrenal	
hypertrophy, characterized by increased prenatal production of adre-
nal progestins and androgens, was associated with more masculinized 
and	autistic	behavioral	and	cognitive	traits	in	girls	(Knickmeyer	et	al.,	
2006).	 In	offspring	of	mothers	with	polycystic	ovary	syndrome,	also	
characterized with elevated maternal androgens, higher testosterone 
levels in the amniotic fluid were associated with an autistic phenotype, 
with a larger impact on females compared with males (Palomba et al., 
2012). Maternal functional polymorphisms in the sex steroid synthe-
sis and metabolism pathways that are associated with higher estrogen 
levels were related to attention problems, hyperactivity, and poorer 
adaptive skills in male offspring (Miodovnik et al., 2012) Furthermore, 
studies on behavioral outcomes after prenatal exogenous sex steroid 
exposure in pregnancies at risk of early fetal loss and premature birth 
showed significant differences in personality and behavior between 
groups, albeit without criteria for any disorder and with little effects 
on	cognition	(Reinisch,	1977).	A	slight,	although	nonsignificant,	asso-
ciation was also established between ovulation- inducing drugs and 
autism	spectrum	disorders	(Hvidtjørn	et	al.,	2011).

There seems to exist a cross talk between fetal glucocorticoids 
and	sex	steroid	hormones.	In	fact,	prenatal	stress,	by	stimulating	HPA	
axis response which, in turn, upregulates adrenal androgen activity, 
was also shown to promote a sexually dimorphic response in animal 
models	(Barrett	&	Swan,	2015;	Hill	et	al.,	2014;	Mueller	&	Bale,	2008)	
These effects, more consistently seen in developing males, include re-
productive	anomalies	(Van	den	Driesche	et	al.,	2011),	feminization	of	
play behavior, and anxiety- related behaviors that are concomitant with 
changes	in	sexually	dimorphic	brain	nuclei	(Arnold	&	Gorski,	1984).	In	
humans, investigation shows that prenatal stress is associated with 
several disorders with sex differences in prevalence such as autism 
spectrum disorders, schizophrenia, and attention- deficit/hyperactivity 
disorder	(Khashan	et	al.,	2008;	Kinney,	Munir,	Crowley,	&	Miller,	2008).

Additionally,	 the	 neuropeptide	 oxytocin	may	 also	 be	 one	 of	 the	
interveners of the fetal programming effect (Carter, 2014; Freedman, 
Brown,	Shen,	&	Schaefer,	2015;	Kenkel,	Yee,	&	Carter,	2014).	While	
endogenous oxytocin has neuroprotective effects during labor, exces-
sive	exogenous	oxytocin	increases	the	risk	of	fetal	hypoxic–ischemic	
events	(Ben-	Ari,	Khalilov,	Kahle,	&	Cherubini,	2012;	Ceanga,	Spataru,	
&	 Zagrean,	 2010;	 Khazipov,	 Tyzio,	 &	 Ben-	Ari,	 2008).	 Besides	 that,	
evidence in humans and animals suggests that perinatal exogenous 
oxytocin may be associated with later cognitive impairment and af-
fective	and	mood	disorders	(Li,	Gonzalez,	&	Zhang,	2012;	Lucht	et	al.,	
2009;	Scantamburlo	et	al.,	2007),	including	attention-	deficit/hyperac-
tivity	disorder,	bipolar	disease,	as	well	as	autism	(Gregory,	Anthopolos,	
Osgood,	Grotegut,	&	Miranda,	2013;	Kurth	&	Haussmann,	2011).	 In	
both rodents and humans, oxytocin can influence emotionality and/or 
social	behaviors	by	promoting	downregulation	of	the	HPA	axis,	through	
ACTH	inhibition	(Vargas-	Martínez	et	al.,	2014).	Leuner,	Caponiti,	and	
Gould	(2012)	found	that	oxytocin	stimulates	both	cell	proliferation	and	
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adult neurogenesis in the ventral portion of the hippocampal dentate 
gyrus of rats, even in those treated with glucocorticoids or exposed to 
a stressor. These findings suggest that oxytocin may protect against 
the suppressive effects of stress hormones on hippocampal plasticity.

Furthermore, melatonin is a neuroendocrine hormone secreted 
by pineal gland and generated under the control of an endogenous 
circadian clock in the suprachiasmatic nucleus of the hypothala-
mus	 (Mauriz,	 Collado,	 Veneroso,	 Reiter,	 &	 González-	Gallego,	 2013;	
Radogna,	 Diederich,	 &	 Ghibelli,	 2010).	 Abnormal	 patterns	 and/or	
reduced levels of maternal melatonin secretion may be associated 
with obstetric complications such as neonatal neurological disability, 
through mechanisms of epigenetic modifications (Tamura et al., 2008). 
Melatonin also seems to affect the circadian plasma concentrations of 
other critical hormones during gestation, such as prolactin and cortisol 
(Patrick et al., 1980). The disruption of the circadian melatonin rhythm 
impairs neurogenesis in rats and is thought to interrupt REM sleep in 
developing animals, resulting in diminished brain growth, as neuronal 
activation	occurs	mainly	during	this	sleep	period	(Guzman-	Marin	et	al.,	
2005;	Morrissey,	Duntley,	Anch,	&	Nonneman,	2004).	Melatonin	also	
appears to be neuroprotective because maternally administered mel-
atonin	prevents	oxidative	lipid	and	DNA	and	mitochondrial	damage	in	
the brain of mature and premature fetal rats (Wakatsuki et al., 2001).

6  | CONCLUSION

The maternal hormonal milieu can provide the ideal or deleterious 
conditions for several aspects of fetal development, and, particularly, 
fetal brain development is one point of great concern for research-
ers and clinicians. In this context, thyroid hormones and cortisol have 
been the most frequently studied hormones over the last few years; 
nevertheless, there are several other hormones that seem to influence 
fetal	neurodevelopment.	Additionally,	 it	appears	to	exist	a	consider-
able cross talk between different hormonal axes which is still poorly 
understood.	Notably,	their	impact	on	intrauterine	central	nervous	sys-
tem development persists throughout life and may be the cause of 
impaired neurodevelopment, including cognitive, behavior, and affec-
tive disorders later in life. For most of these hormones, there are no 
established reference values for pregnancy, or even for nonpregnant 
population. For others, such as thyroid hormones, poorer neurodevel-
opment outcomes have been described for maternal circulating levels 
that are still within the normal reference range for adults. In conclu-
sion, investigation should proceed in order to improve fetal neurode-
velopment outcome associated with maternal hormonal milieu.
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