5,137 research outputs found

    Operators versus functions: from quantum dynamical semigroups to tomographic semigroups

    Full text link
    Quantum mechanics can be formulated in terms of phase-space functions, according to Wigner's approach. A generalization of this approach consists in replacing the density operators of the standard formulation with suitable functions, the so-called generalized Wigner functions or (group-covariant) tomograms, obtained by means of group-theoretical methods. A typical problem arising in this context is to express the evolution of a quantum system in terms of tomograms. In the case of a (suitable) open quantum system, the dynamics can be described by means of a quantum dynamical semigroup 'in disguise', namely, by a semigroup of operators acting on tomograms rather than on density operators. We focus on a special class of quantum dynamical semigroups, the twirling semigroups, that have interesting applications, e.g., in quantum information science. The 'disguised counterparts' of the twirling semigroups, i.e., the corresponding semigroups acting on tomograms, form a class of semigroups of operators that we call tomographic semigroups. We show that the twirling semigroups and the tomographic semigroups can be encompassed in a unique theoretical framework, a class of semigroups of operators including also the probability semigroups of classical probability theory, so achieving a deeper insight into both the mathematical and the physical aspects of the problem.Comment: 12 page

    Star products: a group-theoretical point of view

    Full text link
    Adopting a purely group-theoretical point of view, we consider the star product of functions which is associated, in a natural way, with a square integrable (in general, projective) representation of a locally compact group. Next, we show that for this (implicitly defined) star product explicit formulae can be provided. Two significant examples are studied in detail: the group of translations on phase space and the one-dimensional affine group. The study of the first example leads to the Groenewold-Moyal star product. In the second example, the link with wavelet analysis is clarified.Comment: 42 pages; conclusions added; a few references adde

    Discovering the manifold facets of a square integrable representation: from coherent states to open systems

    Full text link
    Group representations play a central role in theoretical physics. In particular, in quantum mechanics unitary --- or, in general, projective unitary --- representations implement the action of an abstract symmetry group on physical states and observables. More specifically, a major role is played by the so-called square integrable representations. Indeed, the properties of these representations are fundamental in the definition of certain families of generalized coherent states, in the phase-space formulation of quantum mechanics and the associated star product formalism, in the definition of an interesting notion of function of quantum positive type, and in some recent applications to the theory of open quantum systems and to quantum information.Comment: 13 page

    Measurements of Electroweak Top Production at the LHC

    Full text link
    The production of a single top quark at LHC may occur through charged-current electroweak interactions, i.e. via three different processes: the s-channel exchange of a virtual W boson, the t-channel exchange of a virtual W boson and the associated production of a top quark and a W boson (tW). In this paper a review of the measurements of the single-top production made both at ATLAS and CMS will be shown.Comment: Proceedings of CKM 2012, the 7th International Workshop on the CKM Unitarity Triangle, University of Cincinnati, USA, 28 September - 2 October 201

    On the Complexity of ATL and ATL* Module Checking

    Full text link
    Module checking has been introduced in late 1990s to verify open systems, i.e., systems whose behavior depends on the continuous interaction with the environment. Classically, module checking has been investigated with respect to specifications given as CTL and CTL* formulas. Recently, it has been shown that CTL (resp., CTL*) module checking offers a distinctly different perspective from the better-known problem of ATL (resp., ATL*) model checking. In particular, ATL (resp., ATL*) module checking strictly enhances the expressiveness of both CTL (resp., CTL*) module checking and ATL (resp. ATL*) model checking. In this paper, we provide asymptotically optimal bounds on the computational cost of module checking against ATL and ATL*, whose upper bounds are based on an automata-theoretic approach. We show that module-checking for ATL is EXPTIME-complete, which is the same complexity of module checking against CTL. On the other hand, ATL* module checking turns out to be 3EXPTIME-complete, hence exponentially harder than CTL* module checking.Comment: In Proceedings GandALF 2017, arXiv:1709.0176

    Symmetry witnesses

    Full text link
    A symmetry witness is a suitable subset of the space of selfadjoint trace class operators that allows one to determine whether a linear map is a symmetry transformation, in the sense of Wigner. More precisely, such a set is invariant with respect to an injective densely defined linear operator in the Banach space of selfadjoint trace class operators (if and) only if this operator is a symmetry transformation. According to a linear version of Wigner's theorem, the set of pure states, the rank-one projections, is a symmetry witness. We show that an analogous result holds for the set of projections with a fixed rank (with some mild constraint on this rank, in the finite-dimensional case). It turns out that this result provides a complete classification of the set of projections with a fixed rank that are symmetry witnesses. These particular symmetry witnesses are projectable; i.e., reasoning in terms of quantum states, the sets of uniform density operators of corresponding fixed rank are symmetry witnesses too.Comment: 15 page

    Reasoning about Knowledge and Strategies under Hierarchical Information

    Full text link
    Two distinct semantics have been considered for knowledge in the context of strategic reasoning, depending on whether players know each other's strategy or not. The problem of distributed synthesis for epistemic temporal specifications is known to be undecidable for the latter semantics, already on systems with hierarchical information. However, for the other, uninformed semantics, the problem is decidable on such systems. In this work we generalise this result by introducing an epistemic extension of Strategy Logic with imperfect information. The semantics of knowledge operators is uninformed, and captures agents that can change observation power when they change strategies. We solve the model-checking problem on a class of "hierarchical instances", which provides a solution to a vast class of strategic problems with epistemic temporal specifications on hierarchical systems, such as distributed synthesis or rational synthesis
    • …
    corecore