177 research outputs found

    “Cultural Re-Entry”: Pedagogical application of a simple descriptive analysis of the dynamics of cross-cultural encounter for students of International Commerce

    Get PDF
    Cette intervention a pour objet un programme de « dĂ©pressurisation culturelle » crĂ©Ă© pour des Ă©tudiants de retour dans un milieu universitaire aprĂšs un stage d’ordre professionnel dans un pays Ă©tranger. À la diffĂ©rence de la plupart des programmes de sensibilisation interculturelle qui se fixent essentiellement sur « le perçu » et sur les apports cognitifs offerts par la culture dĂ©couverte (culture cible), le programme de « dĂ©pressurisation culturelle » analyse « le perceveur », ou le comportement du sujet face Ă  la culture Ă©trangĂšre Les sept « phases » de dĂ©couverte vont de la perspective de la culture maternelle (contact avec l’altĂ©ritĂ© extrĂȘmement limitĂ©) au « dĂ©sengagement » (capacitĂ© Ă  faire des choix responsables face Ă  la double sollicitation des valeurs acquises dans l’environnement maternel et des alternatives proposĂ©es par une autre culture). En conclusion, nous proposons un appareil pĂ©dagogique, ou une sĂ©rie d’exercices de sensibilisation du groupe.This paper describes a “cultural re-entry” program designed for students returning to the university environment after a professional internship in a foreign country. Unlike most cross-cultural training programs which focus essentially on “the perceived” and provide cognitive input concerning the target culture, the re-entry program examines “the perceiver” and seven possible reactions to the unfamiliar manifested by the learner/observer. The seven “phases” of discovery analyzed range from native perspective (extremely limited experience with “otherness”) to “disengagement” the capacity to make responsible choices when solicited simultaneously by values “acquired” in the maternal environment and alternatives “proposed” by another culture. To conclude, a pedagogical exploitation of the analysis, or a series of group “consciousness-raising” exercises, is proposed

    The Arthrobacter Species FB24 Arth_1007 (DnaB) Intein Is a Pseudogene

    Get PDF
    An Arthrobacter species FB24 gene (locus tag Arth_1007) was previously annotated as a putative intein-containing DnaB helicase of phage origin (Arsp-FB24 DnaB intein). However, it is not a helicase gene because the sequence similarity is limited to inteins. In fact, the flanking exteins total only 66 amino acids. Therefore, the intein should be referred to as the Arsp-FB24 Arth_1007 intein. The Arsp-FB24 Arth_1007 intein failed to splice in its native precursor and in a model precursor. We previously noted that the Arsp-FB24 Arth_1007 intein is the only putative Class 3 intein that is missing the catalytically essential Cys at position 4 of intein Motif F, which is one of the three defining signature residues of this class. Additionally, a catalytically essential His in position 10 of intein Motif B is also absent; this His is the most conserved residue amongst all inteins. Splicing activity was not rescued when these two catalytically important positions were ‘reverted’ back to their consensus residues. This study restores the unity of the Class 3 intein signature sequence in active inteins by demonstrating that the Arsp-FB24 Arth_1007 intein is an inactive pseudogene

    Modeling temporal variations of electrical resistivity associated with pore pressure change in a kilometer-scale natural system

    No full text
    International audienceFrom 1995 to 1998 the natural electric field was monitored with an array of 20 dipoles on a ridge separating two reservoir lakes in the French Alps. The experiment was run to study the correlation between the electric potential variations and transient deformations of the ridge in association with the annual cycle of lake level variations. Large distortion of the induced electric field is observed and is found almost purely static and well correlated to the geology. A simple DC 3-D model is constructed, and resistivity structures that create the distortion are identified. The electrically resistive crystalline bedrock strongly amplifies the static distortion caused by the heterogeneous geology on the ridge. The temporal variations of the electric distortion observed over two years are associated with the lake level cycle. The model suggests that a resistivity variation of the order of 20% in the bedrock can account for the observed seasonal time-varying distortion. The resistivity change could be explained in terms of pore and crack geometry change controlled by stress. This study suggests that in particular geological contexts, electrical resistivity changes in structures can be detected through an amplification of the static distortion of the induced electric field. The results provide a framework to interpret some observations of electric field variations possibly associated with tectonic activity. The galvanic coupling model proposed here is an alternative to the streaming potential effect model, and it defines new criteria for the surface detection of groundwater in the crust

    Active megadetachment beneath the western United States

    Get PDF
    Geodetic data, interpreted in light of seismic imaging, seismicity, xenolith studies, and the late Quaternary geologic history of the northern Great Basin, suggest that a subcontinental-scale extensional detachment is localized near the Moho. To first order, seismic yielding in the upper crust at any given latitude in this region occurs via an M7 earthquake every 100 years. Here we develop the hypothesis that since 1996, the region has undergone a cycle of strain accumulation and release similar to “slow slip events” observed on subduction megathrusts, but yielding occurred on a subhorizontal surface 5–10 times larger in the slip direction, and at temperatures >800°C. Net slip was variable, ranging from 5 to 10 mm over most of the region. Strain energy with moment magnitude equivalent to an M7 earthquake was released along this “megadetachment,” primarily between 2000.0 and 2005.5. Slip initiated in late 1998 to mid-1999 in northeastern Nevada and is best expressed in late 2003 during a magma injection event at Moho depth beneath the Sierra Nevada, accompanied by more rapid eastward relative displacement across the entire region. The event ended in the east at 2004.0 and in the remainder of the network at about 2005.5. Strain energy thus appears to have been transmitted from the Cordilleran interior toward the plate boundary, from high gravitational potential to low, via yielding on the megadetachment. The size and kinematic function of the proposed structure, in light of various proxies for lithospheric thickness, imply that the subcrustal lithosphere beneath Nevada is a strong, thin plate, even though it resides in a high heat flow tectonic regime. A strong lowermost crust and upper mantle is consistent with patterns of postseismic relaxation in the southern Great Basin, deformation microstructures and low water content in dunite xenoliths in young lavas in central Nevada, and high-temperature microstructures in analog surface exposures of deformed lower crust. Large-scale decoupling between crust and upper mantle is consistent with the broad distribution of strain in the upper crust versus the more localized distribution in the subcrustal lithosphere, as inferred by such proxies as low P wave velocity and mafic magmatism

    From ductile to brittle: evolution and localization of deformation below a crustal detachment (Tinos, Cyclades, Greece)

    No full text
    International audienceThe Cycladic Oligo-Miocene detachment of Tinos island is an example of a flat-lying extensional shear zone evolving into a low-angle brittle detachment. A clear continuum of extensional strain from ductile to brittle regime is observed in the footwall. The main brittle structures marking extension are shallow- and steeply dipping normal faults associated with subvertical extensional joints and veins. The earliest brittle structures are lowangle normal faults which commonly superimpose on, and reactivate, earlier (precursory) ductile shear bands, but newly formed low-angle normal faults could also be observed. Low-angle normal faults are cut by late steeply dipping normal faults. The inversion of fault slip data collected within, and away from, the main detachment zone shows that the direction of the minimum stress axis is strictly parallel to the NE-SW stretching lineation and that the maximum principal stress axis remained subvertical during the whole brittle evolution, in agreement with the subvertical attitude of veins throughout the island. The high angle of s1 to the main detachment suggests that the detachment was weak. This observation, together with the presence of a thick layer of cataclasites below the main detachment and the kinematic continuum from ductile to brittle, leads us to propose a kinematic model for the formation of the detachment. Boudinage at the crustal scale induces formation, near the brittle-ductile transition, of ductile shear zones near the edges of boudins. Shear zones are progressively exhumed and replaced by shallowdipping cataclastic shear zones when they reached the brittle field. Most of the displacement is achieved through cataclastic flow in the upper crust and only the last increment of strain gives rise to the formation of brittle faults. The formation of the low-angle brittle detachment is thus ''prepared'' by the ductile shear zone and the cataclasites and favored by the circulation of surface-derived fluids in the shear zone

    Oceanic Residual Depth Measurements, the Plate Cooling Model and Global Dynamic Topography

    Get PDF
    Convective circulation of the mantle causes deflections of the Earth's surface that vary as a function of space and time. Accurate measurements of this dynamic topography are complicated by the need to isolate and remove other sources of elevation, arising from flexure and lithospheric isostasy. The complex architecture of continental lithosphere means that measurement of present-day dynamic topography is more straightforward in the oceanic realm. Here, we present an updated methodology for calculating oceanic residual bathymetry, which is a proxy for dynamic topography. Corrections are applied that account for the effects of sedimentary loading and compaction, for anomalous crustal thickness variations, for subsidence of oceanic lithosphere as a function of age, and for non-hydrostatic geoid height variations. Errors are formally propagated to estimate measurement uncertainties. We apply this methodology to a global database of 1,936 seismic surveys located on oceanic crust and generate 2,297 spot measurements of residual topography, including 1,161 with crustal corrections. The resultant anomalies have amplitudes of ±1 km and wavelengths of ∌1,000 km. Spectral analysis of our database using cross-validation demonstrates that spherical harmonics up to and including degree 30 (i.e. wavelengths down to 1,300 km) are required to accurately represent these observations. Truncation of the expansion at a lower maximum degree erroneously increases the amplitude of inferred long-wavelength dynamic topography. There is a strong correlation between our observations and free-air gravity anomalies, magmatism, ridge seismicity, vertical motions of adjacent rifted margins, and global tomographic models. We infer that shorter wavelength components of the observed pattern of dynamic topography may be attributable to the presence of thermal anomalies within the shallow asthenospheric mantle.This research is supported by a BP-Cambridge collaboration

    Evidence in Sheep for Pre-Natal Transmission of Scrapie to Lambs from Infected Mothers

    Get PDF
    Natural scrapie transmission from infected ewes to their lambs is thought to occur by the oral route around the time of birth. However the hypothesis that scrapie transmission can also occur before birth (in utero) is not currently favoured by most researchers. As scrapie is an opportunistic infection with multiple infection routes likely to be functional in sheep, definitive evidence for or against transmission from ewe to her developing fetus has been difficult to achieve. In addition the very early literature on maternal transmission of scrapie in sheep was compromised by lack of knowledge of the role of the PRNP (prion protein) gene in control of susceptibility to scrapie. In this study we experimentally infected pregnant ewes of known PRNP genotype with a distinctive scrapie strain (SSBP/1) and looked for evidence of transmission of SSBP/1 to the offspring. The sheep were from the NPU Cheviot flock, which has endemic natural scrapie from which SSBP/1 can be differentiated on the basis of histology, genetics of disease incidence and strain typing bioassay in mice. We used embryo transfer techniques to allow sheep fetuses of scrapie-susceptible PRNP genotypes to develop in a range of scrapie-resistant and susceptible recipient mothers and challenged the recipients with SSBP/1. Scrapie clinical disease, caused by both natural scrapie and SSBP/1, occurred in the progeny but evidence (including mouse strain typing) of SSBP/1 infection was found only in lambs born to fully susceptible recipient mothers. Progeny were not protected from transmission of natural scrapie or SSBP/1 by washing of embryos to International Embryo Transfer Society standards or by caesarean derivation and complete separation from their birth mothers. Our results strongly suggest that pre-natal (in utero) transmission of scrapie may have occurred in these sheep

    Stereotypic horses (Equus caballus) are not cognitively impaired

    Get PDF
    Stereotypies in animals are thought to arise from an interaction between genetic predisposition and sub-optimal housing conditions. In domestic horses, a well-studied stereotypy is crib-biting, an abnormal behaviour that appears to help individuals to cope with stressful situations. One prominent hypothesis states that animals affected by stereotypies are cognitively less flexible compared to healthy controls, due to sensitization of a specific brain area, the basal ganglia. The aim of this study was to test this hypothesis in crib-biting and healthy controls, using a cognitive task, reversal learning, which has been used as a diagnostic for basal ganglia dysfunction. The procedure consisted of exposing subjects to four learning tasks; first and second acquisition, and their reversals. For each task, we measured the number of trials to reach criterion and heart rate and heart-rate variability. Importantly, we did not try to prevent crib-biters from executing their stereotypic behaviour. We found that the first reversal learning task required the largest number of trials, confirming its challenging nature. Interestingly, the second reversal learning task required significantly fewer trials to reach criterion, suggesting generalisation learning. However, we did not find any performance differences across groups; both stereotypic and control animals required a similar numbers of trials and did not differ in their physiological responses. Our results thus challenge the widely held belief that crib-biting horses, and stereotypic animals more generally, are cognitively impaired. We conclude that cognitive underperformance may occur in stereotypic horses if they are prevented from crib-biting to cope with experienced stress.PostprintPeer reviewe
    • 

    corecore