358 research outputs found

    Wormholes effect in carbonate acid enhanced oil recovery methods

    Get PDF
    Acid enhanced oil recovery has been a focus of interest in the oil industry due to its significant results on improved recovery, especially in carbonate reservoirs. However, in carbonate reservoirs, highly conductive pathways called “wormholes” are created when acidic fluids are injected into carbonate rocks. Wormholes could jeopardize the enhanced oil recovery outcome and sweep efficiency leaving a substantial volume of oil in the reservoir unswept. This phenomenon has not been investigated yet. The main objective of this study is to identify the impact of these wormholes on the overall oil recovery during enhanced oil recovery practices. This was achieved by injecting acidic fluid into Indiana limestone at various injection rates to control the creation of wormholes. The injection rates were selected based on a proposed dimensionless phase space that predicts the wormholes development and dissolution phase. Our results show that wormholes have a significant impact on the enhanced oil recovery performance resulting in a decrease in the overall oil recovery by 9.6% for portions of the reservoir that experience wormholing. In real field applications, it is recommended to avoid creating wormholes over large portions of the reservoir affected by acid injection as it may jeopardize the field development outcome leaving an unspecified amount of oil in virgin regions in the reservoir which results in additional operational complications. Wormholes are only beneficial near the wellbore for wellbore cleanup and matrix treatment purposes thus providing easier access to the reservoir. However, care needs to be taken to constrain wormhole formation to skin factor reduction and avoid far-reaching wormholes in the reservoir.Cited as: Alarji, H., Clark, S., Regenauer-Lieb, K. Wormholes effect in carbonate acid enhanced oil recovery methods. Advances in Geo-Energy Research, 2022, 6(6): 492-501. https://doi.org/10.46690/ager.2022.06.0

    Entropic Limit Analysis Applied to Radial Cavity Expansion Problems

    Get PDF
    Analytical solutions of limit analysis design for the simple problem of plane strain expansion of a cylindrical cavity are derived and generalized into entropic extremum principles that allow a fundamental assessment of coupled thermal/hydro/mechanical/chemical (THMC) material instabilities and their effect on the upper and lower bounds of dissipation. The proposed approach integrates a thermodynamically based estimation of uncertainties in coupled deformation processes and an identification of the intrinsic material length/time scales that appear as energy eigenstates of the localization problem. Analytical limit analysis design solutions of the cavity expansion are obtained and upper and lower bound estimates are shown to coincide. This provides a robust framework for adding multiphysics feedbacks. Isothermal conditions are first relaxed and the feedback between shear heating, thermal weakening and thermal diffusion is analyzed. Then the analysis is extended to a full range of THMC localization phenomena which are described with a cascade of characteristic time/length scales derived from instabilities in the governing reaction-diffusion equations. Entropic uncertainties are estimated by alternating system constraints between thermodynamic flux and thermodynamic force on the boundaries

    Continental rifts: Complex dissipative patterns from simple boundary conditions

    Get PDF
    We present numerical models that investigate the development of crustal and mantle detachments during lithospheric extension. Our models, which consider an elasto-visco-plastic lithosphere, explore the relationship between stored and dissipated energies during deformation. We apply the fundamental thermodynamic assumptions of minimization of Helmholtz free energy (i.e. stored energy) and maximization of dissipated energy, and include in the models feedback effects modulated by temperature, such as shear heating, that lead to strain localization. Our models simulate a wide range of extensional systems with varying values of crustal thickness and heat flow, showing how strain localization in the mantle interacts with localization in the upper crust and controls the evolution of extensional systems. Model results reveal a richness of structures and deformation styles as a response to a self-organized mechanism that minimizes the internal stored energy of the system by localizing deformation. Crustal detachments, here referred as low-angle normal decoupling horizons, are well developed during extension of overthickened (60 km) continental crust, even when the initial heat flow is relatively low (50 mW m-2). In contrast, localized mantle deformation is most pronounced when the extended lithosphere has a normal crustal thickness (30–40 km) and an intermediate heat flow (60–70mWm-2). Results show a nonlinear response to subtle changes in crustal thickness or heat flow, characterized by abrupt and sometimes unexpected switches in extension modes (e.g., from diffuse extensional deformation to effective lithospheric-scale rupturing) or from mantleto crust-dominated strain localization. We interpret this nonlinearity to result from the interference of doming wavelengths in the presence of multiple necking instabilities. Disharmonic crust and mantle doming wavelengths results in efficient communication between shear zones at different lithospheric levels, leading to rupturing of the whole lithosphere. In contrast, harmonic crust and mantle doming inhibits interaction of shear zones across the lithosphere and results in a prolonged history of extension prior to continental breakup

    Towards a Self Consistent Plate Mantle Model that Includes Elasticity: Simple Benchmarks and Application to Basic Modes of Convection

    Get PDF
    One of the difficulties with self consistent plate-mantle models capturing multiple physical features, such as elasticity, non-Newtonian flow properties, and temperature dependence, is that the individual behaviours cannot be considered in isolation. For instance, if a viscous mantle convection model is generalized naively to include hypo-elasticity, then problems based on Earth-like Rayleigh numbers exhibit almost insurmountable numerical stability issues due to spurious softening associated with the co-rotational stress terms. If a stress limiter is introduced in the form of a power law rheology or yield criterion these difficulties can be avoided. In this paper, a novel Eulerian finite element formulation for visco-elastic convection is presented and the implementation of the co-rotational stress terms is addressed. The salient dimensionless numbers of visco-elastic plastic flows such as Weissenberg, Deborah and Bingham numbers are discussed in a separate section in the context of Geodynamics. We present an Eulerian formulation for slow temperature dependent, visco-elastic-plastic flows. A consistent tangent (incremental) formulation of the governing equations is derived. Numerical and analytical solutions demonstrating the effect of visco-elasticity, co-rotational terms are first discussed for simplified benchmark problems. For flow around cylinders we identify parameter ranges of predominantly viscous and visco-plastic and transient behavior. The influence of locally high strain rates on the importance of elasticity and non-Newtonian effects is also discussed in this context. For the case of simple shear we investigate in detail the effect of different co-rotational stress rates and the effect of power law creep. The results show that the effect of the co-rotational terms is insignificant if realistic stress levels are considered (e.g. deviatoric invariant smaller than 1/10 of the shear modulus say). We also consider the basic convection modes of stagnant lid, episodic resurfacing and mobile lid convection as applicable to a cooling planet. The simulations show that elasticity does not have a significant effect on global parameters such as the Nusselt number and the qualitative nature of the basic convection pattern. Our simple benchmarks show, however, also that elasticity plays a significant role for instabilities on the local scale of an individual subduction zone

    Hierarchical creep cavity formation in an ultramylonite and implications for phase mixing

    Get PDF
    Establishing models for the formation of well-mixed polyphase domains in ultramylonites is difficult because the effects of large strains and thermo-hydro-chemo-mechanical feedbacks can obscure the transient phenomena that may be responsible for domain production. We use scanning electron microscopy and nanotomography to offer critical insights into how the microstructure of a highly deformed quartzo-feldspathic ultramylonite evolved. The dispersal of monomineralic quartz domains in the ultramylonite is interpreted to be the result of the emergence of synkinematic pores, called creep cavities. The cavities can be considered the product of two distinct mechanisms that formed hierarchically: Zener-Stroh cracking and viscous grain-boundary sliding. In initially thick and coherent quartz ribbons deforming by grain-size-insensitive creep, cavities were generated by the Zener-Stroh mechanism on grain boundaries aligned with the YZ plane of finite strain. The opening of creep cavities promoted the ingress of fluids to sites of low stress. The local addition of a fluid lowered the adhesion and cohesion of grain boundaries and promoted viscous grain-boundary sliding. With the increased contribution of viscous grain-boundary sliding, a second population of cavities formed to accommodate strain incompatibilities. Ultimately, the emergence of creep cavities is interpreted to be responsible for the transition of quartz domains from a grain-size-insensitive to a grain-size-sensitive rheology

    Asymptotic hydrodynamic homogenization and thermodynamic bounds for upscaling multiphase flow in porous media

    Get PDF
    This paper presents a novel technique for upscaling multiphase fluid flow in complex porous materials that combines asymptotic homogenization approach with hydrodynamicand thermodynamic bounds. Computational asymptotic homogenization has been widely utilised in solid mechanics as a method for analysing multiscale expansion and convergence coefficients in heterogeneous systems. Computations are performed over several volumes by increasing the size until convergence of the material parameters under different load scenarios is achieved. It works by simplifying the problem with a homogenization method and is ideally suited for estimating the representative elementary volume of microporous material by expanding algorithms. The validity of the method to include complex multiphase hydrodynamic processes and their interaction with the matrix structure of porous media lacks a sound theoretical foundation. To overcome this problem, a variational thermodynamic approach is used. Upper and lower bounds of entropy production are proposed to provide effective material properties with uncertainties. This allows multiple possibilities to address dynamics via thermodynamically linked processes. This work utilizes volume of fluid approach to model multiphase porous media flow in models based on micro-computerized tomography x-ray data of Bentheimer sandstone and Savonnieres carbonate. It is found that the representative elementary volume sizes obtained by the conventional asymptotic homogenization methods do not satisfy thermodynamic bounds which consistently require larger representative elementary volume sizes. For the Savonnieres carbonate the entropic bounds have not converged fully questioning the reliability of the effective properties obtained from the classical method.Document Type: Original articleCited as: Hussain, S. T., Regenauer-Lieb, K., Zhuravljov, A., Hussain, F., Rahman, S. S. Asymptotic hydrodynamic homogenization and thermodynamic bounds for upscaling multiphase flow in porous media. Advances in Geo-Energy Research, 2023, 9(1): 38-53. https://doi.org/10.46690/ager.2023.07.0

    Improved estimates of percolation and anisotropic permeability from 3-D x-ray microtomography using stochastic analyses and visualization

    Get PDF
    X-ray microtomography (micro-CT) with micron resolution enables new ways of characterizing microstructures and opens pathways for forward calculations of multiscale rock properties. A quantitative characterization of the microstructure is the first step in this challenge. We developed a new approach to extract scale-dependent characteristics of porosity, percolation, and anisotropic permeability from 3-D microstructural models of rocks. The Hoshen-Kopelman algorithm of percolation theory is employed for a standard percolation analysis. The anisotropy of permeability is calculated by means of the star volume\ud distribution approach. The local porosity distribution and local percolation probability are obtained by using the local porosity theory. Additionally, the local anisotropy distribution is defined and analyzed through two empirical probability density functions, the isotropy index and the elongation index. For such a high-resolution data set, the typical data sizes of the CT images are on the order of gigabytes to tens of gigabytes; thus an extremely large number of calculations are required. To resolve this large memory problem parallelization in OpenMP was used to optimally harness the shared memory infrastructure on cache coherent Non-Uniform Memory Access architecture machines such as the iVEC SGI Altix 3700Bx2 Supercomputer. We see adequate visualization of the results as an important element in this first pioneering study

    The impact of wettability and fluid saturations on multiphase representative elementary volume estimations of micro-porous media

    Get PDF
    The occurrence of multi-phase flows in porous media is a complex phenomenon that involves multiple scales, ranging from individual pores to larger continuum scales. Upscaling frameworks have emerged as a response to the need for addressing the disparity between micro-scale processes and macroscopic modelling. Determination of the representative elementary volume is important for understanding fluid dynamics in micro-porous materials. The size of the representative elementary volume for multiphase flow in porous media is significantly affected by wettability and fluid saturations. Previous studies have overlooked this aspect by conducting simulations under conditions of constant medium wettability and fluid saturations. This study uses finite volume simulations with a volume of fluid approach for two distinct asymptotic homogenization methods, namely hydrodynamic bounds of relative permeability and thermodynamic bounds of entropy production. Strong wetting conditions with high wetting phase saturation were found to require a smaller sample size to establish representative elementary volume, while mixed-wettability scenarios necessitate the largest sample sizes. These findings improve our understanding of multiphase fluid flow behaviour in micro-porous materials and aid in enhancing techniques for scaling up observations and predictive modelling in engineering and environmental fields.Document Type: Short communicationCited as: Hussain, S. T., Regenauer-Lieb, K., Zhuravljov, A., Hussain, F., Rahman, S. S. The impact of wettability and fluid saturations on multiphase representative elementary volume estimations of micro-porous media. Capillarity, 2023, 9(1): 1-8. https://doi.org/10.46690/capi.2023.10.0
    corecore