37 research outputs found

    Loading rate dependence of permeability evolution in porous aeolian sandstones

    Get PDF
    Mechanical properties of rocks are characterized by their notable dependence on the applied deformation rate. However, little is known about the strain rate dependence of fluid flow properties since most laboratory tests are conducted using a single, high strain rate. We have investigated the effect of loading rate on the permeability of porous sandstones by carrying out triaxial compression tests at four different temperatures and strain rates with continuous monitoring of permeability, acoustic emission (AE), and pore fluid chemistry. All tests are characterized by an initial permeability decrease due to inferred compaction of favorably oriented cracks. The amount of initial permeability reduction increases with decreasing strain rate, thus implying a more efficient initial compaction at slower strain rates. At a later stage of loading, permeability correlates with stress, ion concentration, or AE damage depending on the strain rate used. High strain rate tests are characterized by a positive power law or logarithmic correlation between permeability and AE damage. At slow strain rates, permeabilities decrease exponentially with mean effective stress and axial strain for the Locharbriggs sandstone. The Clashach sandstone exhibits a linear correlation between permeability and exit pore fluid concentrations (Si, Mg, Fe, Al) if a slow strain rate is used. These observations have important implications for the applicability of room temperature, high strain rate laboratory data to the conditions that prevail in the Earth's crust

    Ancient genomes indicate population replacement in Early Neolithic Britain

    Get PDF
    The roles of migration, admixture and acculturation in the European transition to farming have been debated for over 100 years. Genome-wide ancient DNA studies indicate predominantly Aegean ancestry for continental Neolithic farmers, but also variable admixture with local Mesolithic hunter-gatherers. Neolithic cultures first appear in Britain circa 4000 bc, a millennium after they appeared in adjacent areas of continental Europe. The pattern and process of this delayed British Neolithic transition remain unclear. We assembled genome-wide data from 6 Mesolithic and 67 Neolithic individuals found in Britain, dating 8500–2500 bc. Our analyses reveal persistent genetic affinities between Mesolithic British and Western European hunter-gatherers. We find overwhelming support for agriculture being introduced to Britain by incoming continental farmers, with small, geographically structured levels of hunter-gatherer ancestry. Unlike other European Neolithic populations, we detect no resurgence of hunter-gatherer ancestry at any time during the Neolithic in Britain. Genetic affinities with Iberian Neolithic individuals indicate that British Neolithic people were mostly descended from Aegean farmers who followed the Mediterranean route of dispersal. We also infer considerable variation in pigmentation levels in Europe by circa 6000 bc

    First large-scale quantification study of DNA preservation in insects from natural history collections using genome-wide sequencing

    Get PDF
    Insect declines are a global issue with significant ecological and economic ramifications. Yet, we have a poor understanding of the genomic impact these losses can have. Genome-wide data from historical specimens have the potential to provide baselines of population genetic measures to study population change, with natural history collections representing large repositories of such specimens. However, an initial challenge in conducting historical DNA data analyses is to understand how molecular preservation varies between specimens. Here, we highlight how Next-Generation Sequencing methods developed for studying archaeological samples can be applied to determine DNA preservation from only a single leg taken from entomological museum specimens, some of which are more than a century old. An analysis of genome-wide data from a set of 113 red-tailed bumblebee Bombus lapidarius specimens, from five British museum collections, was used to quantify DNA preservation over time. Additionally, to improve our analysis and further enable future research, we generated a novel assembly of the red-tailed bumblebee genome. Our approach shows that museum entomological specimens are comprised of short DNA fragments with mean lengths below 100 base pairs (BP), suggesting a rapid and large-scale post-mortem reduction in DNA fragment size. After this initial decline, however, we find a relatively consistent rate of DNA decay in our dataset, and estimate a mean reduction in fragment length of 1.9 bp per decade. The proportion of quality filtered reads mapping to our assembled reference genome was around 50%, and decreased by 1.1% per decade. We demonstrate that historical insects have significant potential to act as sources of DNA to create valuable genetic baselines. The relatively consistent rate of DNA degradation, both across collections and through time, mean that population-level analyses—for example for conservation or evolutionary studies—are entirely feasible, as long as the degraded nature of DNA is accounted for

    Grey wolf genomic history reveals a dual ancestry of dogs

    Get PDF
    The grey wolf (Canis lupus) was the first species to give rise to a domestic population, and they remained widespread throughout the last Ice Age when many other large mammal species went extinct. Little is known, however, about the history and possible extinction of past wolf populations or when and where the wolf progenitors of the present-day dog lineage (Canisfamiliaris) lived(1-8). Here we analysed 72 ancient wolf genomes spanning the last 100,000 years from Europe, Siberia and North America. We found that wolf populations were highly connected throughout the Late Pleistocene, with levels of differentiation an order of magnitude lower than they are today. This population connectivity allowed us to detect natural selection across the time series, including rapid fixation of mutations in the gene IFT8840,000-30,000 years ago. We show that dogs are overall more closely related to ancient wolves from eastern Eurasia than to those from western Eurasia, suggesting a domestication process in the east. However, we also found that dogs in the Near East and Africa derive up to half of their ancestry from a distinct population related to modern southwest Eurasian wolves, reflecting either an independent domestication process or admixture from local wolves. None of the analysed ancient wolf genomes is a direct match for either of these dog ancestries, meaning that the exact progenitor populations remain to be located.Peer reviewe

    The Beaker phenomenon and the genomic transformation of northwest Europe

    Get PDF
    From around 2750 to 2500 bc, Bell Beaker pottery became widespread across western and central Europe, before it disappeared between 2200 and 1800 bc. The forces that propelled its expansion are a matter of long-standing debate, and there is support for both cultural diffusion and migration having a role in this process. Here we present genome-wide data from 400 Neolithic, Copper Age and Bronze Age Europeans, including 226 individuals associated with Beaker-complex artefacts. We detected limited genetic affinity between Beaker-complex-associated individuals from Iberia and central Europe, and thus exclude migration as an important mechanism of spread between these two regions. However, migration had a key role in the further dissemination of the Beaker complex. We document this phenomenon most clearly in Britain, where the spread of the Beaker complex introduced high levels of steppe-related ancestry and was associated with the replacement of approximately 90% of Britain’s gene pool within a few hundred years, continuing the east-to-west expansion that had brought steppe-related ancestry into central and northern Europe over the previous centuries

    The Anglo-Saxon migration and the formation of the early English gene pool.

    Get PDF
    The history of the British Isles and Ireland is characterized by multiple periods of major cultural change, including the influential transformation after the end of Roman rule, which precipitated shifts in language, settlement patterns and material culture1. The extent to which migration from continental Europe mediated these transitions is a matter of long-standing debate2-4. Here we study genome-wide ancient DNA from 460 medieval northwestern Europeans-including 278 individuals from England-alongside archaeological data, to infer contemporary population dynamics. We identify a substantial increase of continental northern European ancestry in early medieval England, which is closely related to the early medieval and present-day inhabitants of Germany and Denmark, implying large-scale substantial migration across the North Sea into Britain during the Early Middle Ages. As a result, the individuals who we analysed from eastern England derived up to 76% of their ancestry from the continental North Sea zone, albeit with substantial regional variation and heterogeneity within sites. We show that women with immigrant ancestry were more often furnished with grave goods than women with local ancestry, whereas men with weapons were as likely not to be of immigrant ancestry. A comparison with present-day Britain indicates that subsequent demographic events reduced the fraction of continental northern European ancestry while introducing further ancestry components into the English gene pool, including substantial southwestern European ancestry most closely related to that seen in Iron Age France5,6
    corecore