23 research outputs found

    Materias de Tecnología de la Información en la Licenciatura en Documentación de la UPV

    Get PDF
    La gestión y organización de la información a todos los niveles es un elemento clave para cualquier profesional en el área de las Tecnologías de la Información. Para el caso de un licenciado en Documentación parece evidente la necesidad de una sólida formación en dicha área que comprenda una base firme y un suficiente conocimiento de las posibilidades existentes. En el presente artículo se pretende realizar una revisión de contenidos relacionados con Gestión y Organización del Conocimiento en la Licenciatura en Documentación de la Universidad Politécnica de Valencia (UPV)

    CALIOPE: una arquitectura para aprendizaje autónomo colaborativo en entornos no presenciales

    Get PDF
    La aplicación de las nuevas tecnologías a la pedagogía ha abierto un nuevo horizonte en los procesos de aprendizaje. En el presente artículo se presenta una arquitectura basada en el paradigma de sistemas multi-agente como una herramienta de apoyo a la creación de aulas virtuales. La arquitectura integra los elementos necesarios para la interacción de profesores y alumnos en un entorno asíncrono que facilite el aprendizaje activo colaborativo a través de experiencias no presenciales

    A Qualitative Analysis of the Persuasive Properties of Argumentation Schemes

    Get PDF
    Argumentation schemes are generalised patterns that provide a way to (partially) dissociate the content from the reasoning structure of the argument. On the other hand, Cialdini’s principles of persuasion provide a generic model to analyse the persuasive properties of human interaction (e.g., natural language). Establishing the relationship between principles of persuasion and argumentation schemes can contribute to the improvement of the argument-based human-computer interaction paradigm. In this work, we perform a qualitative analysis of the persuasive properties of argumentation schemes. For that purpose, we present a new study conducted on a population of over one hundred participants, where twelve different argumentation schemes are instanced into four different topics of discussion considering both stances (i.e., in favour and against). Participants are asked to relate these argumentation schemes with the perceived Cialdini’s principles of persuasion. From the results of our study, it is possible to conclude that some of the most commonly used patterns of reasoning in human communication have an underlying persuasive focus, regardless of how they are instanced in natural language argumentation (i.e., their stance, the domain, or their content)

    A Qualitative Analysis of the Persuasive Properties of Argumentation Schemes

    Get PDF
    Argumentation schemes are generalised patterns that provide a way to (partially) dissociate the content from the reasoning structure of the argument. On the other hand, Cialdini’s principles of persuasion provide a generic model to analyse the persuasive properties of human interaction (e.g., natural language). Establishing the relationship between principles of persuasion and argumentation schemes can contribute to the improvement of the argument-based human-computer interaction paradigm. In this work, we perform a qualitative analysis of the persuasive properties of argumentation schemes. For that purpose, we present a new study conducted on a population of over one hundred participants, where twelve different argumentation schemes are instanced into four different topics of discussion considering both stances (i.e., in favour and against). Participants are asked to relate these argumentation schemes with the perceived Cialdini’s principles of persuasion. From the results of our study, it is possible to conclude that some of the most commonly used patterns of reasoning in human communication have an underlying persuasive focus, regardless of how they are instanced in natural language argumentation (i.e., their stance, the domain, or their content)

    Intensificación en Inteligencia Artificial de Ingeniería Informática

    Get PDF
    Este es un documento que describe la organización y distribución de las asignaturas que componen la intensificación en Inteligencia Artificial de la titulación de Ingeniería Informática de la Universidad Politécnica de Valencia. Primeramente se presentará la organización general de los temas de lA de la intensificación y posteriormente se comentará en detalle las asignaturas que componen el módulo de IA propiamente dicho

    mWater Prototype 3

    Full text link
    This report concerns the application of a regulated open Multi-Agent System (MAS), mWater, that uses intelligent agents to simulate a flexible water-right market. Our simulator focuses on demands and, in particular, on the type of regulatory (in terms of norms selection and agents behaviour), and market mechanisms that foster an efficient use of water while also trying to prevent conflicts among parties. In this scenario, a MAS plays a vital role as it allows us to define different norms, agents behaviour and roles, and assess their impact in the market, thus enhancing the quality and applicability of its results as a decision support tool.Botti Navarro, VJ.; Garrido Tejero, A.; Giret Boggino, AS.; Noriega, P.; Gimeno, J. (2013). mWater Prototype 3. http://hdl.handle.net/10251/3212

    Designing normative open virtual enterprises

    Full text link
    This is an Accepted Manuscript of an article published by Taylor & Francis Group in Enterprise Information Systems on 23/03/2016, available online: http://www.tandfonline.com/10.1080/17517575.2015.1036927.[EN] There is an increasing interest on developing virtual enterprises in order to deal with the globalisation of the economy, the rapid growth of information technologies and the increase of competitiveness. In this paper we deal with the development of normative open virtual enterprises (NOVEs). They are systems with a global objective that are composed of a set of heterogeneous entities and enterprises that exchange services following a specific normative context. In order to analyse and design systems of this kind the multi-agent paradigm seems suitable because it offers a specific solution for supporting the social and contractual relationships between enterprises and for formalising their business processes. This paper presents how the Regulated Open Multiagent systems (ROMAS) methodology, an agent-oriented software methodology, can be used to analyse and design NOVEs. ROMAS offers a complete development process that allows identifying and formalising of the structure of NOVEs, their normative context and the interactions among their members. The use of ROMAS is exemplified by means of a case study that represents an automotive supply chain.This work was partially supported by the projects [PROMETEOII/2013/019], [TIN2012-36586-C03-01], [FP7-29493], [TIN2011-27652-C03-00] and [CSD2007-00022], and the CASES project within the 7th European Community Framework Programme [grant agreement number 294931].Garcia Marques, ME.; Giret Boggino, AS.; Botti Navarro, VJ. (2016). Designing normative open virtual enterprises. Enterprise Information Systems. 10(3):303-324. https://doi.org/10.1080/17517575.2015.1036927S303324103Cardoso, H. L., Urbano, J., Brandão, P., Rocha, A. P., & Oliveira, E. (2012). ANTE: Agreement Negotiation in Normative and Trust-Enabled Environments. Advances on Practical Applications of Agents and Multi-Agent Systems, 261-264. doi:10.1007/978-3-642-28786-2_33Chu, X. N., Tso, S. K., Zhang, W. J., & Li, Q. (2002). Partnership Synthesis for Virtual Enterprises. The International Journal of Advanced Manufacturing Technology, 19(5), 384-391. doi:10.1007/s001700200028Davidsson, P., & Jacobsson, A. (s. f.). Towards Norm-Governed Behavior in Virtual Enterprises. Studies in Computational Intelligence, 35-55. doi:10.1007/978-3-540-88071-4_3DeLoach, S. A., & Ojeda, J. C. G. (2010). O-MaSE: a customisable approach to designing and building complex, adaptive multi-agent systems. International Journal of Agent-Oriented Software Engineering, 4(3), 244. doi:10.1504/ijaose.2010.036984DI MARZO SERUGENDO, G., GLEIZES, M.-P., & KARAGEORGOS, A. (2005). Self-organization in multi-agent systems. The Knowledge Engineering Review, 20(2), 165-189. doi:10.1017/s0269888905000494Dignum, V. 2003. “A Model for Organizational Interaction: Based on Agents, Founded in Logic.” PhD diss., Utrecht University.Dignum, V., and F. Dignum. 2006.A Landscape of Agent Systems for the Real World. Technical Report 44-CS-2006-061. Utrecht: Institute of Information and Computing Sciences, Utrecht University.Dignum, V., Meyer, J.-J. C., Dignum, F., & Weigand, H. (2003). Formal Specification of Interaction in Agent Societies. Lecture Notes in Computer Science, 37-52. doi:10.1007/978-3-540-45133-4_4Garcia, E. 2013. “Engineering Regulated Open Multiagent Systems.” PhD diss., Universitat Politecnica de Valencia.Garcia, E., Giret, A., & Botti, V. (s. f.). Software Engineering for Service-Oriented MAS. Lecture Notes in Computer Science, 86-100. doi:10.1007/978-3-540-85834-8_9Garcia, E., Giret, A., & Botti, V. (2013). A Model-Driven CASE tool for developing and verifying regulated open MAS. Science of Computer Programming, 78(6), 695-704. doi:10.1016/j.scico.2011.10.009Garcia, E., Giret, A., & Botti, V. (2011). Evaluating software engineering techniques for developing complex systems with multiagent approaches. Information and Software Technology, 53(5), 494-506. doi:10.1016/j.infsof.2010.12.012Garcia, E., Giret, A., & Botti, V. (2011). Regulated Open Multi-Agent Systems Based on Contracts. Information Systems Development, 243-255. doi:10.1007/978-1-4419-9790-6_20Garcia, E., Giret, A., & Botti, V. (2014). ROMAS Methodology. Handbook on Agent-Oriented Design Processes, 331-369. doi:10.1007/978-3-642-39975-6_11Hollander, C. D., & Wu, A. S. (2011). The Current State of Normative Agent-Based Systems. Journal of Artificial Societies and Social Simulation, 14(2). doi:10.18564/jasss.1750HORLING, B., & LESSER, V. (2004). A survey of multi-agent organizational paradigms. The Knowledge Engineering Review, 19(4), 281-316. doi:10.1017/s0269888905000317Julian, V., Rebollo, M., Argente, E., Botti, V., Carrascosa, C., & Giret, A. (2009). Using THOMAS for Service Oriented Open MAS. Lecture Notes in Computer Science, 56-70. doi:10.1007/978-3-642-10739-9_5Luck, M., Barakat, L., Keppens, J., Mahmoud, S., Miles, S., Oren, N., … Taweel, A. (2011). Flexible Behaviour Regulation in Agent Based Systems. Lecture Notes in Computer Science, 99-113. doi:10.1007/978-3-642-22427-0_8Meneguzzi, F., Modgil, S., Oren, N., Miles, S., Luck, M., & Faci, N. (2012). Applying electronic contracting to the aerospace aftercare domain. Engineering Applications of Artificial Intelligence, 25(7), 1471-1487. doi:10.1016/j.engappai.2012.06.004Presley, A., Sarkis, J., Barnett, W., & Liles, D. (2001). International Journal of Flexible Manufacturing Systems, 13(2), 145-162. doi:10.1023/a:1011131417956Saeki, M., & Kaiya, H. (2008). Supporting the Elicitation of Requirements Compliant with Regulations. Active Flow and Combustion Control 2018, 228-242. doi:10.1007/978-3-540-69534-9_18Such, J. M., García-Fornes, A., Espinosa, A., & Bellver, J. (2013). Magentix2: A privacy-enhancing Agent Platform. Engineering Applications of Artificial Intelligence, 26(1), 96-109. doi:10.1016/j.engappai.2012.06.009Telang, P. R., & Singh, M. P. (2009). Enhancing Tropos with Commitments. Lecture Notes in Computer Science, 417-435. doi:10.1007/978-3-642-02463-4_22Wooldridgey, M., & Ciancarini, P. (2001). Agent-Oriented Software Engineering: The State of the Art. Lecture Notes in Computer Science, 1-28. doi:10.1007/3-540-44564-1_

    Research opportunities for argumentation in social networks

    Full text link
    Nowadays, many websites allow social networking between their users in an explicit or implicit way. In this work, we show how argumentation schemes theory can provide a valuable help to formalize and structure on-line discussions and user opinions in decision support and business oriented websites that held social networks between their users. Two real case studies are studied and analysed. Then, guidelines to enhance social decision support and recommendations with argumentation are provided.This work summarises results of the authors joint research, funded by an STMS of the Agreement Technologies COST Action 0801, by the Spanish government grants [CONSOLIDER-INGENIO 2010 CSD2007-00022, and TIN2012-36586-C03-01] and by the GVA project [PROMETEO 2008/051].Heras Barberá, SM.; Atkinson, KM.; Botti Navarro, VJ.; Grasso, F.; Julian Inglada, VJ.; Mcburney, PJ. (2013). Research opportunities for argumentation in social networks. Artificial Intelligence Review. 39(1):39-62. doi:10.1007/s10462-012-9389-0S3962391Amgoud L (2009) Argumentation for decision making. Argumentation in artificial intelligence. Springer, BerlinAnderson P (2007) What is Web 2.0? Ideas, technologies and implications for education. JISC Iechnology and Standards Watch reportBentahar J, Meyer CJJ, Moulin B (2007) Securing agent-oriented systems: an argumentation and reputation-based approach. In: Proceedings of the 4th international conference on information technology: new generations (ITNG 2007), IEEE Computer Society, pp 507–515Buckingham Shum S (2008) Cohere: towards Web 2.0 argumentation. In: Proceedings of the 2nd international conference on computational models of argument, COMMA, pp 28–30Burke R (2002) Hybrid recommender systems: survey and experiments. User Model User-Adapt Interact 12:331–370Cartwright D, Atkinson K (2008) Political engagement through tools for argumentation. In: Proceedings of the second international conference on computational models of argument (COMMA 2008), pp 116–127Chesñevar C, McGinnis J, Modgil S, Rahwan I, Reed C, Simari G, South M, Vreeswijk G, Willmott S (2006) Towards an argument interchange format. Knowl Eng Rev 21(4):293–316Chesñevar CI, Maguitman AG, Gonzàlez MP (2009) Empowering recommendation technologies through argumentation. Argumentation in artificial intelligence. Springer, Berlin, pp 403–422García AJ, Dix J, Simari GR (2009) Argument-based logic programming. Argumentation in artificial intelligence. Springer, BerlinGolbeck J (2006) Generating predictive movie recommendations from trust in social networks. In: Proceedings of the fourth international conference on trust management, LNCS, vol 3986, 93–104Gordon T, Prakken H, Walton D (2007) The Carneades model of argument and burden of proof. Artif Intell 171(10–15):875–896Guha R, Kumar R, Raghavan P, Tomkins A (2004) Propagating trust and distrust. In: Proceedings of the 13th international conference on, World Wide Web, pp 403–412Heras S, Navarro M, Botti V, Julián V (2009) Applying dialogue games to manage recommendation in social networks. In: Proceedings of the 6th international workshop on argumentation in multi-agent aystems, ArgMASHeras S, Atkinson K, Botti V, Grasso F, Julián V, McBurney P (2010a) How argumentation can enhance dialogues in social networks. In: Proceedings of the 3rd international conference on computational models of argument, COMMA, vol 216, pp 267–274Heras S, Atkinson K, Botti V, Grasso F, Julián V, McBurney P (2010b) Applying argumentation to enhance dialogues in social networks. In: ECAI 2010 workshop on computational models of natural argument, CMNA, pp 10–17Karacapilidis N, Tzagarakis M (2007) Web-based collaboration and decision making support: a multi-disciplinary approach. Web-Based Learn Teach Technol 2(4):12–23Kim D, Benbasat I (2003) Trust-related arguments in internet stores: a framework for evaluation. J Electron Commer Res 4(2):49–64Kim D, Benbasat I (2006) The effects of trust-assuring arguments on consumer trust in internet stores: application of Toulmin’s model of argumentation. Inf Syst Rese 17(3):286–300Laera L, Tamma V, Euzenat J, Bench-Capon T, Payne T (2006) Reaching agreement over ontology alignments. In: Proceedings of the 5th international semantic web conference (ISWC 2006)Lange C, Bojãrs U, Groza T, Breslin J, Handschuh S (2008) Expressing argumentative discussions in social media sites. In: Social data on the web (SDoW2008) workshop at the 7th international semantic web conferenceLinden G, Smith B, York J (2003) Amazon.com recommendations: item-to-item collaborative filtering. IEEE Internet Comput 7(1):76–80Linden G, Hong J, Stonebraker M, Guzdial M (2009) Recommendation algorithms, online privacy and more. Commun ACM, 52(5)Mika P (2007) Ontologies are us: a unified model of social networks and semantics. J Web Semant 5(1):5–15Montaner M, López B, de la Rosa JL (2002) Opinion-based filtering through trust. In: Cooperative information agents VI, LNCS, vol 2446, pp 127–144Ontañón S, Plaza E (2008) Argumentation-based information exchange in prediction markets. In: Proceedings of the 5th international workshop on argumentation in multi-agent systems, ArgMASPazzani MJ, Billsus D (2007) Content-based recommendation systems. In: The adaptive web, LNCS, vol 4321, pp 325–341Rahwan I, Zablith F, Reed C (2007) Laying the foundations for a world wide argument web. Artif Intell 171(10–15):897–921Rahwan I, Banihashemi B (2008) Arguments in OWL: a progress report. In: Proceedings of the 2nd international conference on computational models of argument (COMMA), pp 297–310Reed C, Walton D (2007) Argumentation schemes in dialogue. In: Dissensus and the search for common ground, OSSA-07, volume CD-ROM, pp 1–11Sabater J, Sierra C (2002) Reputation and social network analysis in multi-agent systems. In: Proceedings of the 1st international joint conference on autonomous agents and multiagent systems, vol 1, pp 475–482Schafer JB, Konstan JA, Riedl J (2001) E-commerce recommendation applications. Data Min Knowl Discov 5:115–153Schafer JB, Frankowski D, Herlocker J, Sen S (2007) Collaborative filtering recommender systems. In: The adaptive web, LNCS, vol 4321, pp 291–324Schneider J, Groza T, Passant A (2012) A review of argumentation for the aocial semantic web. Semantic web-interoperability, usability, applicability. IOS Press, Washington, DCTempich C, Pinto HS, Sure Y, Staab S (2005) An argumentation ontology for distributed, loosely-controlled and evolvInG Engineering processes of oNTologies (DILIGENT). In: Proceedings of the 2nd European semantic web conference, ESWC, pp 241–256Toulmin SE (1958) The uses of argument. Cambridge University Press, Cambridge, UKTrojahn C, Quaresma P, Vieira R, Isaac A (2009) Comparing argumentation frameworks for composite ontology matching. in: Proceedings of the 6th international workshop on argumentation in multi-agent systems, ArgMASTruthMapping. http://truthmapping.com/Walter FE, Battiston S, Schweitzer F (2007) A model of a trust-based recommendation system on a social network. J Auton Agents Multi-Agent Syst 16(1):57–74Walton D, Krabbe E (1995) Commitment in dialogue: basic concepts of interpersonal reasoning. State University of New York Press, New York, NYWalton D, Reed C, Macagno F (2008) Argumentation schemes. Cambridge University Press, CambridgeWells S, Gourlay C, Reed C (2009) Argument blogging. Computational models of natural argument, CMNAWyner A, Schneider J (2012) Arguing from a point of view. In: Proceedings of the first international conference on agreement technologie

    Autophagy fights disease through cellular self-digestion

    Full text link
    Autophagy, or cellular self-digestion, is a cellular pathway involved in protein and organelle degradation, with an astonishing number of connections to human disease and physiology. For example, autophagic dysfunction is associated with cancer, neurodegeneration, microbial infection and ageing. Paradoxically, although autophagy is primarily a protective process for the cell, it can also play a role in cell death. Understanding autophagy may ultimately allow scientists and clinicians to harness this process for the purpose of improving human health.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62766/1/nature06639.pd

    Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

    Get PDF
    In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure fl ux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defi ned as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (inmost higher eukaryotes and some protists such as Dictyostelium ) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the fi eld understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation it is imperative to delete or knock down more than one autophagy-related gene. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways so not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field
    corecore