2,570 research outputs found

    Renewable and Tough Poly(l -lactic acid)/Polyurethane Blends Prepared by Dynamic Vulcanization

    Get PDF
    Melt blending of homopolymers is an effective way to achieve an attractive combination of polymer properties. Dynamic vulcanization of fatty-acid-based polyester polyol with glycerol and poly(l-lactic acid) (PLLA) in the presence of hexamethylene diisocyanate (HDI) was performed with the aim of toughening PLLA. The dynamic vulcanization in an internal mixer led to the formation of a PLLA/PU biobased blend. Melt torque, Fourier transform infrared (FTIR), and gel fraction analysis demonstrated the successful formation of cross-linked polyurethane (PU) inside the PLLA matrix. Scanning electron microscopy (SEM) analysis showed that the PLLA/PU blends exhibit a sea-island morphology. Gel fraction analysis revealed that a rubbery phase was formed inside the PLLA matrix, which was insoluble in chloroform. FTIR analysis of the insoluble part shows the appearance of an absorption band centered at 1758 cm-1, related to the crystalline carbonyl vibration of the PLLA component, thus suggesting the partial involvement of PLLA chains in the cross-linking reaction. The overall content of the PU phase in the blends significantly affected the mechanical properties, thermal stability, and crystallization behavior of the materials. The overall crystallization rate of PLLA was noticeably decreased by the incorporation of PU. At the same time, polarized light optical microscopy (PLOM) analysis revealed that the presence of the PU rubbery phase inside the PLLA matrix promoted PLLA nucleation. With the formation of the PU network, the impact strength showed a remarkable increase while Young's modulus correspondingly decreased. The blends showed slightly reduced thermal stability compared to the neat PLLA

    Episodic medical home interventions in severe bedridden Chronic Respiratory Failure patients: a 4 year retrospective study

    Get PDF
    Background and Aim. Home care for respiratory patients includes a complex array of services delivered in an uncontrolled setting. The role of a respiratory specialist inside the home healthcare team has been scarcely studied up to now. Our aims were to analyse the number and quality of episodic home visits performed by respiratory physicians to severe bedridden Chronic Respiratory Failure (CRF) patients, and also to evaluate the safety of tracheotomy tube substitutions at home. Methods. 231 home interventions (59.8/year) in 123 CRF patients (59 males; age 63±17y, 24 on oxygen therapy, 35 under non invasive mechanical ventilation, 46 under invasive ventilation, 74 with tracheostomy) located 35±16 km far from referred hospital, were revised in a period of 4 years (2005-2008). Results. Chronic Obstructive Pulmonary Disease (COPD) (31%) and amyotrophic lateral sclerosis (ALS) (28%) were the more frequent diagnoses. Interventions were: tracheotomy tube substitution (64%) presenting 22% of minor adverse events and 1.4% of major adverse events; change or new oxygen prescription (37%); nocturnal pulsed saturimetric trend prescription (24%); change in mechanical ventilation (MV) setting (4%); new MV adaptation (7%). After medical intervention, new home medical equipment devices (oxygen and MV) were prescribed in 36% of the cases while rehabilitative hospital admission and home respiratory physiotherapy prescription was proposed in 9% and 6% of the cases respectively. Patient/caregiver’s satisfaction was reported on average 8.48±0.79 (1 = the worst; 10 = the higher). The local health care system (HCS) reimbursed 70€ for each home intervention. Families saved 42±20€ per visit for ambulance transportation. Conclusions. Home visits performed by a respiratory physician to bedridden patients with chronic respiratory failure: 1. include predominantly patients affected by COPD and ALS; 2. determine a very good satisfaction to patients/caregivers; 3. allow money saving to caregivers; 4. are predominantly made up to change tracheotomy tube without severe adverse events

    Functional relevance of coronary artery disease by cardiac magnetic resonance and cardiac computed tomography : myocardial perfusion and fractional flow reserve

    Get PDF
    Coronary artery disease (CAD) is one of the leading causes of morbidity and mortality and it is responsible for an increasing resource burden. The identification of patients at high risk for adverse events is crucial to select those who will receive the greatest benefit from revascularization. To this aim, several non-invasive functional imaging modalities are usually used as gatekeeper to invasive coronary angiography, but the diagnostic yield of elective invasive coronary angiography remains unfortunately low. Stress myocardial perfusion imaging by cardiac magnetic resonance (stress-CMR) has emerged as an accurate technique for diagnosis and prognostic stratification of the patients with known or suspected CAD thanks to high spatial and temporal resolution, absence of ionizing radiation, and the multiparametric value including the assessment of cardiac anatomy, function, and viability. On the other side, cardiac computed tomography (CCT) has emerged as unique technique providing coronary arteries anatomy and more recently, due to the introduction of stress-CCT and noninvasive fractional flow reserve (FFR-CT), functional relevance of CAD in a single shot scan. The current review evaluates the technical aspects and clinical experience of stress-CMR and CCT in the evaluation of functional relevance of CAD discussing the strength and weakness of each approach

    Measurement of the cross-section and charge asymmetry of WW bosons produced in proton-proton collisions at s=8\sqrt{s}=8 TeV with the ATLAS detector

    Get PDF
    This paper presents measurements of the W+μ+νW^+ \rightarrow \mu^+\nu and WμνW^- \rightarrow \mu^-\nu cross-sections and the associated charge asymmetry as a function of the absolute pseudorapidity of the decay muon. The data were collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with the ATLAS experiment at the LHC and correspond to a total integrated luminosity of 20.2~\mbox{fb^{-1}}. The precision of the cross-section measurements varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the 1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured with an uncertainty between 0.002 and 0.003. The results are compared with predictions based on next-to-next-to-leading-order calculations with various parton distribution functions and have the sensitivity to discriminate between them.Comment: 38 pages in total, author list starting page 22, 5 figures, 4 tables, submitted to EPJC. All figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-13

    Single hadron response measurement and calorimeter jet energy scale uncertainty with the ATLAS detector at the LHC

    Get PDF
    The uncertainty on the calorimeter energy response to jets of particles is derived for the ATLAS experiment at the Large Hadron Collider (LHC). First, the calorimeter response to single isolated charged hadrons is measured and compared to the Monte Carlo simulation using proton-proton collisions at centre-of-mass energies of sqrt(s) = 900 GeV and 7 TeV collected during 2009 and 2010. Then, using the decay of K_s and Lambda particles, the calorimeter response to specific types of particles (positively and negatively charged pions, protons, and anti-protons) is measured and compared to the Monte Carlo predictions. Finally, the jet energy scale uncertainty is determined by propagating the response uncertainty for single charged and neutral particles to jets. The response uncertainty is 2-5% for central isolated hadrons and 1-3% for the final calorimeter jet energy scale.Comment: 24 pages plus author list (36 pages total), 23 figures, 1 table, submitted to European Physical Journal

    Measurement of χ c1 and χ c2 production with s√ = 7 TeV pp collisions at ATLAS

    Get PDF
    The prompt and non-prompt production cross-sections for the χ c1 and χ c2 charmonium states are measured in pp collisions at s√ = 7 TeV with the ATLAS detector at the LHC using 4.5 fb−1 of integrated luminosity. The χ c states are reconstructed through the radiative decay χ c → J/ψγ (with J/ψ → μ + μ −) where photons are reconstructed from γ → e + e − conversions. The production rate of the χ c2 state relative to the χ c1 state is measured for prompt and non-prompt χ c as a function of J/ψ transverse momentum. The prompt χ c cross-sections are combined with existing measurements of prompt J/ψ production to derive the fraction of prompt J/ψ produced in feed-down from χ c decays. The fractions of χ c1 and χ c2 produced in b-hadron decays are also measured

    Search for squarks and gluinos in events with isolated leptons, jets and missing transverse momentum at s√=8 TeV with the ATLAS detector

    Get PDF
    The results of a search for supersymmetry in final states containing at least one isolated lepton (electron or muon), jets and large missing transverse momentum with the ATLAS detector at the Large Hadron Collider are reported. The search is based on proton-proton collision data at a centre-of-mass energy s√=8 TeV collected in 2012, corresponding to an integrated luminosity of 20 fb−1. No significant excess above the Standard Model expectation is observed. Limits are set on supersymmetric particle masses for various supersymmetric models. Depending on the model, the search excludes gluino masses up to 1.32 TeV and squark masses up to 840 GeV. Limits are also set on the parameters of a minimal universal extra dimension model, excluding a compactification radius of 1/R c = 950 GeV for a cut-off scale times radius (ΛR c) of approximately 30

    Search for chargino-neutralino production with mass splittings near the electroweak scale in three-lepton final states in √s=13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for supersymmetry through the pair production of electroweakinos with mass splittings near the electroweak scale and decaying via on-shell W and Z bosons is presented for a three-lepton final state. The analyzed proton-proton collision data taken at a center-of-mass energy of √s=13  TeV were collected between 2015 and 2018 by the ATLAS experiment at the Large Hadron Collider, corresponding to an integrated luminosity of 139  fb−1. A search, emulating the recursive jigsaw reconstruction technique with easily reproducible laboratory-frame variables, is performed. The two excesses observed in the 2015–2016 data recursive jigsaw analysis in the low-mass three-lepton phase space are reproduced. Results with the full data set are in agreement with the Standard Model expectations. They are interpreted to set exclusion limits at the 95% confidence level on simplified models of chargino-neutralino pair production for masses up to 345 GeV

    Measurements of fiducial and differential cross sections for Higgs boson production in the diphoton decay channel at s√=8 TeV with ATLAS

    Get PDF
    Measurements of fiducial and differential cross sections are presented for Higgs boson production in proton-proton collisions at a centre-of-mass energy of s√=8 TeV. The analysis is performed in the H → γγ decay channel using 20.3 fb−1 of data recorded by the ATLAS experiment at the CERN Large Hadron Collider. The signal is extracted using a fit to the diphoton invariant mass spectrum assuming that the width of the resonance is much smaller than the experimental resolution. The signal yields are corrected for the effects of detector inefficiency and resolution. The pp → H → γγ fiducial cross section is measured to be 43.2 ±9.4(stat.) − 2.9 + 3.2 (syst.) ±1.2(lumi)fb for a Higgs boson of mass 125.4GeV decaying to two isolated photons that have transverse momentum greater than 35% and 25% of the diphoton invariant mass and each with absolute pseudorapidity less than 2.37. Four additional fiducial cross sections and two cross-section limits are presented in phase space regions that test the theoretical modelling of different Higgs boson production mechanisms, or are sensitive to physics beyond the Standard Model. Differential cross sections are also presented, as a function of variables related to the diphoton kinematics and the jet activity produced in the Higgs boson events. The observed spectra are statistically limited but broadly in line with the theoretical expectations
    corecore