275 research outputs found

    Discordant introgression in a rapidly expanding hybrid swarm

    Get PDF
    The erosion of species boundaries can involve rapid evolutionary change. Consequently, many aspects of the process remain poorly understood, including the formation, expansion, and evolution of hybrid swarms. Biological invasions involving hybridization present exceptional opportunities to study the erosion of species boundaries because timelines of interactions and outcomes are frequently well known. Here, we examined clinal variation across codominant and maternally inherited genetic markers as well as phenotypic traits to characterize the expansion and evolution of a hybrid swarm between native Cyprinella venusta and invasive Cyprinella lutrensis minnows. Discordant introgression of phenotype, microsatellite multilocus genotype, and mtDNA haplotype indicates that the observable expansion of the C. venusta × C. lutrensis hybrid swarm is a false invasion front. Both parental and hybrid individuals closely resembling C. lutrensis are numerically dominant in the expansion wake, indicating that the non-native parental phenotype may be selectively favored. These findings show that cryptic introgression can extend beyond the phenotypic boundaries of hybrid swarms and that hybrid swarms likely expand more rapidly than can be documented from phenotypic variation alone. Similarly, dominance of a single parental phenotype following an introduction event may lead to instances of species erosion being mistaken for species displacement without hybridization

    Scaling of fracture systems in geological media

    Get PDF

    Lymphocytic Choriomeningitis in Michigan

    Get PDF
    We summarize the first reported case of acquired lymphocytic choriomeningitis virus (LCMV) infection in Michigan to be investigated by public health authorities and provide evidence of the focal nature of LCMV infection in domestic rodents. Results of serologic and virologic testing in rodents contrasted, and negative serologic test results should be confirmed by tissue testing

    Computerized clinical documentation system in the pediatric intensive care unit

    Get PDF
    BACKGROUND: To determine whether a computerized clinical documentation system (CDS): 1) decreased time spent charting and increased time spent in patient care; 2) decreased medication errors; 3) improved clinical decision making; 4) improved quality of documentation; and/or 5) improved shift to shift nursing continuity. METHODS: Before and after implementation of CDS, a time study involving nursing care, medication delivery, and normalization of serum calcium and potassium values was performed. In addition, an evaluation of completeness of documentation and a clinician survey of shift to shift reporting were also completed. This was a modified one group, pretest-posttest design. RESULTS: With the CDS there was: improved legibility and completeness of documentation, data with better accessibility and accuracy, no change in time spent in direct patient care or charting by nursing staff. Incidental observations from the study included improved management functions of our nurse manager; improved JCAHO documentation compliance; timely access to clinical data (labs, vitals, etc); a decrease in time and resource use for audits; improved reimbursement because of the ability to reconstruct lost charts; limited human data entry by automatic data logging; eliminated costs of printing forms. CDS cost was reasonable. CONCLUSIONS: When compared to a paper chart, the CDS provided a more legible, compete, and accessible patient record without affecting time spent in direct patient care. The availability of the CDS improved shift to shift reporting. Other observations showed that the CDS improved management capabilities; helped physicians deliver care; improved reimbursement; limited data entry errors; and reduced costs

    A Gammaherpesvirus Cooperates with Interferon-alpha/beta-Induced IRF2 to Halt Viral Replication, Control Reactivation, and Minimize Host Lethality

    Get PDF
    The gammaherpesviruses, including Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV), establish latency in memory B lymphocytes and promote lymphoproliferative disease in immunocompromised individuals. The precise immune mechanisms that prevent gammaherpesvirus reactivation and tumorigenesis are poorly defined. Murine gammaherpesvirus 68 (MHV68) is closely related to EBV and KSHV, and type I (alpha/beta) interferons (IFNαβ) regulate MHV68 reactivation from both B cells and macrophages by unknown mechanisms. Here we demonstrate that IFNβ is highly upregulated during latent infection, in the absence of detectable MHV68 replication. We identify an interferon-stimulated response element (ISRE) in the MHV68 M2 gene promoter that is bound by the IFNαβ-induced transcriptional repressor IRF2 during latency in vivo. The M2 protein regulates B cell signaling to promote establishment of latency and reactivation. Virus lacking the M2 ISRE (ISREΔ) overexpresses M2 mRNA and displays uncontrolled acute replication in vivo, higher latent viral load, and aberrantly high reactivation from latency. These phenotypes of the ISREΔ mutant are B-cell-specific, require IRF2, and correlate with a significant increase in virulence in a model of acute viral pneumonia. We therefore identify a mechanism by which a gammaherpesvirus subverts host IFNαβ signaling in a surprisingly cooperative manner, to directly repress viral replication and reactivation and enforce latency, thereby minimizing acute host disease. Since we find ISREs 5′ to the major lymphocyte latency genes of multiple rodent, primate, and human gammaherpesviruses, we propose that cooperative subversion of IFNαβ-induced IRFs to promote latent infection is an ancient strategy that ensures a stable, minimally-pathogenic virus-host relationship

    Diseases of the central nervous system caused by lymphocytic choriomeningitis virus and other arenaviruses

    Full text link
    This chapter highlights the neurologic sequelae of viruses from two major groups of arenaviruses, the Lassa-lymphocytic choriomeningitis serocomplex and the Tacaribe serocomplex. Fundamental features of these viruses are reviewed, including the rich history of their discovery and the large influence that the study of arenaviruses has had on the disciplines of virology and immunology more generally. Virus morphology, viral genome organization, individual viral protein functions, and small-animal models of disease are also discussed. The epidemiology, natural history, and laboratory evaluation of the arenaviruses that cause human illness are presented. In particular, the neurologic complications of lymphocytic choriomeningitis virus in immunocompetent, pregnant, and solid-organ transplant patients are highlighted. The neurologic sequelae of the arenaviruses that cause hemorrhagic fever (i.e., Lassa fever, Argentine hemorrhagic fever, Bolivian hemorrhagic fever, Venezuelan hemorrhagic fever) are also presented. Lastly, potential treatment and vaccine strategies of these diseases are reviewed. © 2014 Elsevier B.V

    Delayed Recovery of Skeletal Muscle Mass following Hindlimb Immobilization in mTOR Heterozygous Mice

    Get PDF
    The present study addressed the hypothesis that reducing mTOR, as seen in mTOR heterozygous (+/−) mice, would exaggerate the changes in protein synthesis and degradation observed during hindlimb immobilization as well as impair normal muscle regrowth during the recovery period. Atrophy was produced by unilateral hindlimb immobilization and data compared to the contralateral gastrocnemius. In wild-type (WT) mice, the gradual loss of muscle mass plateaued by day 7. This response was associated with a reduction in basal protein synthesis and development of leucine resistance. Proteasome activity was consistently elevated, but atrogin-1 and MuRF1 mRNAs were only transiently increased returning to basal values by day 7. When assessed 7 days after immobilization, the decreased muscle mass and protein synthesis and increased proteasome activity did not differ between WT and mTOR+/− mice. Moreover, the muscle inflammatory cytokine response did not differ between groups. After 10 days of recovery, WT mice showed no decrement in muscle mass, and this accretion resulted from a sustained increase in protein synthesis and a normalization of proteasome activity. In contrast, mTOR+/− mice failed to fully replete muscle mass at this time, a defect caused by the lack of a compensatory increase in protein synthesis. The delayed muscle regrowth of the previously immobilized muscle in the mTOR+/− mice was associated with a decreased raptor•4EBP1 and increased raptor•Deptor binding. Slowed regrowth was also associated with a sustained inflammatory response (e.g., increased TNFα and CD45 mRNA) during the recovery period and a failure of IGF-I to increase as in WT mice. These data suggest mTOR is relatively more important in regulating the accretion of muscle mass during recovery than the loss of muscle during the atrophy phase, and that protein synthesis is more sensitive than degradation to the reduction in mTOR during muscle regrowth

    The role of gene expression in ecological speciation

    Get PDF
    Ecological speciation is the process by which barriers to gene flow between populations evolve due to adaptive divergence via natural selection. A relatively unexplored area in ecological speciation is the role of gene expression. Gene expression may be associated with ecologically important phenotypes not evident from morphology and play a role during colonization of new environments. Here we review two potential roles of gene expression in ecological speciation: (1) its indirect role in facilitating population persistence and (2) its direct role in contributing to genetically based reproductive isolation. We find indirect evidence that gene expression facilitates population persistence, but direct tests are lacking. We also find clear examples of gene expression having effects on phenotypic traits and adaptive genetic divergence, but links to the evolution of reproductive isolation itself remain indirect. Gene expression during adaptive divergence seems to often involve complex genetic architectures controlled by gene networks, regulatory regions, and “eQTL hotspots.” Nonetheless, we review how approaches for isolating the functional mutations contributing to adaptive divergence are proving to be successful. The study of gene expression has promise for increasing our understanding ecological speciation, particularly when integrative approaches are applied
    corecore