294 research outputs found
Planck 2013 results. XXII. Constraints on inflation
We analyse the implications of the Planck data for cosmic inflation. The Planck nominal mission temperature anisotropy measurements, combined with the WMAP large-angle polarization, constrain the scalar spectral index to be ns = 0:9603 _ 0:0073, ruling out exact scale invariance at over 5_: Planck establishes an upper bound on the tensor-to-scalar ratio of r < 0:11 (95% CL). The Planck data thus shrink the space of allowed standard inflationary models, preferring potentials with V00 < 0. Exponential potential models, the simplest hybrid inflationary models, and monomial potential models of degree n _ 2 do not provide a good fit to the data. Planck does not find statistically significant running of the scalar spectral index, obtaining dns=dln k = 0:0134 _ 0:0090. We verify these conclusions through a numerical analysis, which makes no slowroll approximation, and carry out a Bayesian parameter estimation and model-selection analysis for a number of inflationary models including monomial, natural, and hilltop potentials. For each model, we present the Planck constraints on the parameters of the potential and explore several possibilities for the post-inflationary entropy generation epoch, thus obtaining nontrivial data-driven constraints. We also present a direct reconstruction of the observable range of the inflaton potential. Unless a quartic term is allowed in the potential, we find results consistent with second-order slow-roll predictions. We also investigate whether the primordial power spectrum contains any features. We find that models with a parameterized oscillatory feature improve the fit by __2 e_ _ 10; however, Bayesian evidence does not prefer these models. We constrain several single-field inflation models with generalized Lagrangians by combining power spectrum data with Planck bounds on fNL. Planck constrains with unprecedented accuracy the amplitude and possible correlation (with the adiabatic mode) of non-decaying isocurvature fluctuations. The fractional primordial contributions of cold dark matter (CDM) isocurvature modes of the types expected in the curvaton and axion scenarios have upper bounds of 0.25% and 3.9% (95% CL), respectively. In models with arbitrarily correlated CDM or neutrino isocurvature modes, an anticorrelated isocurvature component can improve the _2 e_ by approximately 4 as a result of slightly lowering the theoretical prediction for the ` <_ 40 multipoles relative to the higher multipoles. Nonetheless, the data are consistent with adiabatic initial conditions
2020 American College of Rheumatology Guideline for the Management of Gout
Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/155484/1/art41247.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/155484/2/art41247_am.pd
The Fourteenth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the extended Baryon Oscillation Spectroscopic Survey and from the second phase of the Apache Point Observatory Galactic Evolution Experiment
The fourth generation of the Sloan Digital Sky Survey (SDSS-IV) has been in
operation since July 2014. This paper describes the second data release from
this phase, and the fourteenth from SDSS overall (making this, Data Release
Fourteen or DR14). This release makes public data taken by SDSS-IV in its first
two years of operation (July 2014-2016). Like all previous SDSS releases, DR14
is cumulative, including the most recent reductions and calibrations of all
data taken by SDSS since the first phase began operations in 2000. New in DR14
is the first public release of data from the extended Baryon Oscillation
Spectroscopic Survey (eBOSS); the first data from the second phase of the
Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE-2),
including stellar parameter estimates from an innovative data driven machine
learning algorithm known as "The Cannon"; and almost twice as many data cubes
from the Mapping Nearby Galaxies at APO (MaNGA) survey as were in the previous
release (N = 2812 in total). This paper describes the location and format of
the publicly available data from SDSS-IV surveys. We provide references to the
important technical papers describing how these data have been taken (both
targeting and observation details) and processed for scientific use. The SDSS
website (www.sdss.org) has been updated for this release, and provides links to
data downloads, as well as tutorials and examples of data use. SDSS-IV is
planning to continue to collect astronomical data until 2020, and will be
followed by SDSS-V.Comment: SDSS-IV collaboration alphabetical author data release paper. DR14
happened on 31st July 2017. 19 pages, 5 figures. Accepted by ApJS on 28th Nov
2017 (this is the "post-print" and "post-proofs" version; minor corrections
only from v1, and most of errors found in proofs corrected
2021 DORIS definition of remission in SLE: final recommendations from an international task force
OBJECTIVE: To achieve consensus on a definition of remission in SLE (DORIS). BACKGROUND: Remission is the stated goal for both patient and caregiver, but consensus on a definition of remission has been lacking. Previously, an international task force consisting of patient representatives and medical specialists published a framework for such a definition, without reaching a final recommendation. METHODS: Several systematic literature reviews were performed and specific research questions examined in suitably chosen data sets. The findings were discussed, reformulated as recommendations and voted on. RESULTS: Based on data from the literature and several SLE-specific data sets, a set of recommendations was endorsed. Ultimately, the DORIS Task Force recommended a single definition of remission in SLE, based on clinical systemic lupus erythematosus disease activitiy index (SLEDAI)=0, Evaluator's Global Assessment <0.5 (0-3), prednisolone 5 mg/day or less, and stable antimalarials, immunosuppressives, and biologics. CONCLUSION: The 2021 DORIS definition of remission in SLE is recommended for use in clinical care, education, and research including clinical trials and observational studies
Machine learning identifies clusters of longitudinal autoantibody profiles predictive of systemic lupus erythematosus disease outcomes
OBJECTIVES: A novel longitudinal clustering technique was applied to comprehensive autoantibody data from a large, well-characterised, multinational inception systemic lupus erythematosus (SLE) cohort to determine profiles predictive of clinical outcomes. METHODS: Demographic, clinical and serological data from 805 patients with SLE obtained within 15 months of diagnosis and at 3-year and 5-year follow-up were included. For each visit, sera were assessed for 29 antinuclear antibodies (ANA) immunofluorescence patterns and 20 autoantibodies. K-means clustering on principal component analysis-transformed longitudinal autoantibody profiles identified discrete phenotypic clusters. One-way analysis of variance compared cluster enrolment demographics and clinical outcomes at 10-year follow-up. Cox proportional hazards model estimated the HR for survival adjusting for age of disease onset. RESULTS: Cluster 1 (n=137, high frequency of anti-Smith, anti-U1RNP, AC-5 (large nuclear speckled pattern) and high ANA titres) had the highest cumulative disease activity and immunosuppressants/biologics use at year 10. Cluster 2 (n=376, low anti-double stranded DNA (dsDNA) and ANA titres) had the lowest disease activity, frequency of lupus nephritis and immunosuppressants/biologics use. Cluster 3 (n=80, highest frequency of all five antiphospholipid antibodies) had the highest frequency of seizures and hypocomplementaemia. Cluster 4 (n=212) also had high disease activity and was characterised by multiple autoantibody reactivity including to antihistone, anti-dsDNA, antiribosomal P, anti-Sjögren syndrome antigen A or Ro60, anti-Sjögren syndrome antigen B or La, anti-Ro52/Tripartite Motif Protein 21, antiproliferating cell nuclear antigen and anticentromere B). Clusters 1 (adjusted HR 2.60 (95% CI 1.12 to 6.05), p=0.03) and 3 (adjusted HR 2.87 (95% CI 1.22 to 6.74), p=0.02) had lower survival compared with cluster 2. CONCLUSION: Four discrete SLE patient longitudinal autoantibody clusters were predictive of long-term disease activity, organ involvement, treatment requirements and mortality risk
Van der Waals heterostructures
Research on graphene and other two-dimensional atomic crystals is intense and
likely to remain one of the hottest topics in condensed matter physics and
materials science for many years. Looking beyond this field, isolated atomic
planes can also be reassembled into designer heterostructures made layer by
layer in a precisely chosen sequence. The first - already remarkably complex -
such heterostructures (referred to as 'van der Waals') have recently been
fabricated and investigated revealing unusual properties and new phenomena.
Here we review this emerging research area and attempt to identify future
directions. With steady improvement in fabrication techniques, van der Waals
heterostructures promise a new gold rush, rather than a graphene aftershock
Gene Expression Signature Analysis Identifies Vorinostat as a Candidate Therapy for Gastric Cancer
Gastric cancer continues to be one of the deadliest cancers in the world and therefore identification of new drugs targeting this type of cancer is thus of significant importance. The purpose of this study was to identify and validate a therapeutic agent which might improve the outcomes for gastric cancer patients in the future. manifested a reversed pattern.We showed that analysis of gene expression signature may represent an emerging approach to discover therapeutic agents for gastric cancer, such as vorinostat. The observation of altered gene expression after vorinostat treatment may provide the clue to identify the molecular mechanism of vorinostat and those patients likely to benefit from vorinostat treatment
- …