2,135 research outputs found

    Predicting disease progression in progressive supranuclear palsy in multicenter clinical trials

    Get PDF
    INTRODUCTION: Clinical and MRI measurements can track disease progression in PSP, but many have not been extensively evaluated in multicenter clinical trials. We identified optimal measures to capture clinical decline and predict disease progression in multicenter PSP trials. METHODS: Longitudinal clinical rating scales, neuropsychological test scores, and volumetric MRI data from an international, phase 2/3 clinical trial of davunetide for PSP (intent to treat population, n = 303) were used to identify measurements with largest effect size, strongest correlation with clinical change, and best ability to predict dropout or clinical decline over one year as measured by PSP Rating Scale (PSPRS). RESULTS: Baseline cognition as measured by Repeatable Battery for Assessing Neuropsychological Status (RBANS) was associated with attrition, but had only a small effect. PSPRS and Clinical Global Impression (CGI) had the largest effect size for measuring change. Annual change in CGI, RBANS, color trails, and MRI midbrain and ventricular volumes were most strongly correlated with annual PSPRS and had the largest effect sizes for detecting annual change. At baseline, shorter disease duration, more severe depression, and lower performance on RBANS and executive function tests were associated with faster worsening of the PSPRS in completers. With dropouts included, SEADL, RBANS, and executive function tests had significant effect on PSPRS trajectory of change. CONCLUSION: Baseline cognitive status and mood influence the rate of disease progression in PSP. Multiple clinical, neuropsychological, and volumetric MRI measurements are sensitive to change over one year in PSP and appropriate for use in multicenter clinical trials

    Endoscopic vs Robotic Thyroidectomy: Which is Better?

    Get PDF
    published_or_final_versionSpringer Open Choice, 21 Feb 201

    Risk Factors for Nonsynchronous Second Primary Malignancy and Related Death in Patients with Differentiated Thyroid Carcinoma

    Get PDF
    BACKGROUND: Differentiated thyroid cancer (DTC) survivors are at increased risk of developing nonsynchronous second primary malignancy (NSPM). This study aims to examine possible risk factors leading to occurrence of NSPM as well as risk factors leading to NSPM-related death in patients with DTC. METHODS: Of the 1,106 patients with DTC managed at our institution, 92 (8.3%) patients developed NSPM and 40 (3.6%) patients died of NSPM. All causes of death were confirmed by medical record, autopsy report or death certificate. Clinicopathological variables were compared between those without NSPM and with NSPM as well as between those who died of NSPM and did not die of NSPM. Significant variables on univariate analysis were entered into a Cox proportional hazards model. RESULTS: The median latency period from diagnosis of DTC to NSPM was 142.7 (range 16.8-511.0) months. For occurrence of NSPM, age at DTC diagnosis >/=50 years old [relative risk (RR) = 2.35], cumulative radioactive iodine (RAI) activity 3.0-8.9 GBq (RR = 2.38), and external local radiotherapy (ERT) (RR = 1.95) were significant risk factors. For NSPM-related death, age at DTC diagnosis >/=50 years old (RR = 3.32) and nonbreast cancer (RR = 5.76) were significant risk factors. CONCLUSIONS: NSPM accounted for 18.7% of all deaths in DTC, but mortality was high (43.5%). Age at DTC diagnosis >/=50 years old, cumulative RAI activity 3.0-8.9 GBq, and ERT were significant risk factors for occurrence of NSPM, whereas age at DTC diagnosis >/=50 years old and the diagnosis of nonbreast cancer were significant risk factors for NSPM-related death.published_or_final_versionSpringer Open Choice, 21 Feb 201

    First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data

    Get PDF
    Spinning neutron stars asymmetric with respect to their rotation axis are potential sources of continuous gravitational waves for ground-based interferometric detectors. In the case of known pulsars a fully coherent search, based on matched filtering, which uses the position and rotational parameters obtained from electromagnetic observations, can be carried out. Matched filtering maximizes the signalto- noise (SNR) ratio, but a large sensitivity loss is expected in case of even a very small mismatch between the assumed and the true signal parameters. For this reason, narrow-band analysis methods have been developed, allowing a fully coherent search for gravitational waves from known pulsars over a fraction of a hertz and several spin-down values. In this paper we describe a narrow-band search of 11 pulsars using data from Advanced LIGO’s first observing run. Although we have found several initial outliers, further studies show no significant evidence for the presence of a gravitational wave signal. Finally, we have placed upper limits on the signal strain amplitude lower than the spin-down limit for 5 of the 11 targets over the bands searched; in the case of J1813-1749 the spin-down limit has been beaten for the first time. For an additional 3 targets, the median upper limit across the search bands is below the spin-down limit. This is the most sensitive narrow-band search for continuous gravitational waves carried out so far

    Search for direct pair production of the top squark in all-hadronic final states in proton-proton collisions at s√=8 TeV with the ATLAS detector

    Get PDF
    The results of a search for direct pair production of the scalar partner to the top quark using an integrated luminosity of 20.1fb−1 of proton–proton collision data at √s = 8 TeV recorded with the ATLAS detector at the LHC are reported. The top squark is assumed to decay via t˜→tχ˜01 or t˜→ bχ˜±1 →bW(∗)χ˜01 , where χ˜01 (χ˜±1 ) denotes the lightest neutralino (chargino) in supersymmetric models. The search targets a fully-hadronic final state in events with four or more jets and large missing transverse momentum. No significant excess over the Standard Model background prediction is observed, and exclusion limits are reported in terms of the top squark and neutralino masses and as a function of the branching fraction of t˜ → tχ˜01 . For a branching fraction of 100%, top squark masses in the range 270–645 GeV are excluded for χ˜01 masses below 30 GeV. For a branching fraction of 50% to either t˜ → tχ˜01 or t˜ → bχ˜±1 , and assuming the χ˜±1 mass to be twice the χ˜01 mass, top squark masses in the range 250–550 GeV are excluded for χ˜01 masses below 60 GeV

    Observation of associated near-side and away-side long-range correlations in √sNN=5.02  TeV proton-lead collisions with the ATLAS detector

    Get PDF
    Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02  TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1  μb-1 of data as a function of transverse momentum (pT) and the transverse energy (ΣETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∼0) correlation that grows rapidly with increasing ΣETPb. A long-range “away-side” (Δϕ∼π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ΣETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ΣETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos⁡2Δϕ modulation for all ΣETPb ranges and particle pT

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Optical Trapping with High Forces Reveals Unexpected Behaviors of Prion Fibrils

    Get PDF
    Amyloid fibrils are important in diverse cellular functions, feature in many human diseases and have potential applications in nanotechnology. Here we describe methods that combine optical trapping and fluorescent imaging to characterize the forces that govern the integrity of amyloid fibrils formed by a yeast prion protein. A crucial advance was to use the self-templating properties of amyloidogenic proteins to tether prion fibrils, enabling their manipulation in the optical trap. At normal pulling forces the fibrils were impervious to disruption. At much higher forces (up to 250 pN), discontinuities occurred in force-extension traces before fibril rupture. Experiments with selective amyloid-disrupting agents and mutations demonstrated that such discontinuities were caused by the unfolding of individual subdomains. Thus, our results reveal unusually strong noncovalent intermolecular contacts that maintain fibril integrity even when individual monomers partially unfold and extend fibril length.National Institutes of Health (U.S.) (Grant GM025874)National Science Foundation (U.S.). CAREER (Award 0643745

    Spine neck plasticity regulates compartmentalization of synapses

    Get PDF
    Dendritic spines have been proposed to transform synaptic signals through chemical and electrical compartmentalization. However, the quantitative contribution of spine morphology to synapse compartmentalization and its dynamic regulation are still poorly understood. We used time-lapse super-resolution stimulated emission depletion (STED) imaging in combination with fluorescence recovery after photobleaching (FRAP) measurements, two-photon glutamate uncaging, electrophysiology and simulations to investigate the dynamic link between nanoscale anatomy and compartmentalization in live spines of CA1 neurons in mouse brain slices. We report a diversity of spine morphologies that argues against common categorization schemes and establish a close link between compartmentalization and spine morphology, wherein spine neck width is the most critical morphological parameter. We demonstrate that spine necks are plastic structures that become wider and shorter after long-term potentiation. These morphological changes are predicted to lead to a substantial drop in spine head excitatory postsynaptic potential (EPSP) while preserving overall biochemical compartmentalization
    corecore