40 research outputs found

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Localization and broadband follow-up of the gravitational-wave transient GW150914

    Get PDF
    A gravitational-wave (GW) transient was identified in data recorded by the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO) detectors on 2015 September 14. The event, initially designated G184098 and later given the name GW150914, is described in detail elsewhere. By prior arrangement, preliminary estimates of the time, significance, and sky location of the event were shared with 63 teams of observers covering radio, optical, near-infrared, X-ray, and gamma-ray wavelengths with ground- and space-based facilities. In this Letter we describe the low-latency analysis of the GW data and present the sky localization of the first observed compact binary merger. We summarize the follow-up observations reported by 25 teams via private Gamma-ray Coordinates Network circulars, giving an overview of the participating facilities, the GW sky localization coverage, the timeline, and depth of the observations. As this event turned out to be a binary black hole merger, there is little expectation of a detectable electromagnetic (EM) signature. Nevertheless, this first broadband campaign to search for a counterpart of an Advanced LIGO source represents a milestone and highlights the broad capabilities of the transient astronomy community and the observing strategies that have been developed to pursue neutron star binary merger events. Detailed investigations of the EM data and results of the EM follow-up campaign are being disseminated in papers by the individual teams

    Localization and broadband follow-up of the gravitational-wave transient GW150914

    Get PDF
    A gravitational-wave transient was identified in data recorded by the Advanced LIGO detectors on 2015 September 14. The event candidate, initially designated G184098 and later given the name GW150914, is described in detail elsewhere. By prior arrangement, preliminary estimates of the time, significance, and sky location of the event were shared with 63 teams of observers covering radio, optical, near-infrared, X-ray, and gamma-ray wavelengths with ground- and space-based facilities. In this Letter we describe the low-latency analysis of the gravitational wave data and present the sky localization of the first observed compact binary merger. We summarize the follow-up observations reported by 25 teams via private Gamma-ray Coordinates Network Circulars, giving an overview of the participating facilities, the gravitational wave sky localization coverage, the timeline and depth of the observations. As this event turned out to be a binary black hole merger, there is little expectation of a detectable electromagnetic signature. Nevertheless, this first broadband campaign to search for a counterpart of an Advanced LIGO source represents a milestone and highlights the broad capabilities of the transient astronomy community and the observing strategies that have been developed to pursue neutron star binary merger events. Detailed investigations of the electromagnetic data and results of the electromagnetic follow-up campaign will be disseminated in the papers of the individual teams

    Structural requirements of quinone coenzymes for endogenous and dye-mediated coupled electron transport in bacterial photosynthesis.

    No full text
    Electron transport in continuous light has been investigated in chromatophores of Rhodopseudomonas capsulata. Ala pho+, depleted in ubiquinone-10 and subsequently reconstituted with various ubiquinone homologs and analogs. In addition the restoration of electron transport in depleted chromatophores by the artificial redox compounds N-methylphenazonium methosulfate and N,N,N',N'-tetramethyl-p-phenylenediamine was studied. The following pattern of activities was obtained: (1) Reconstitution of cyclic photophosphorylation with ubiquinone-10 was saturated at about 40 ubiquinone molecules per reaction center. (2) Reconstitution by ubiquinone homologs was dependent on the length of the isoprenoid side chain and the amount of residual ubiquinone in the extracted chromatophores. If two or more molecules of ubiquinone-10 per reaction center were retained, all homologs with a side chain longer than two isoprene units were as active as ubiquinone-10 in reconstitution, and the double bonds in the side chain were not required. If less than two molecules per reaction center remained, an unsaturated side chain longer than five units was necessary for full activity. Plastoquinone, alpha-tocopherol, and naphthoquinones of the vitamin K series were relatively inactive in both cases. (3) All ubiquinone homologs, also ubiquinone-1 and -2, could be reduced equally well by the photosynthetic reaction center, as measured by light-induced proton binding in the presence of antimycin A and uncoupler. Plastoquinone was found to be a poor electron acceptor. (4) Photophosphorylation could be reconstituted by N-methylphenazonium methosulfate as well as by N,N,N',N'-tetramethyl-p-phenylenediamine in an antimycin-insensitive way, if more than two ubiquinones per reaction center remained. These compounds were active also in more extensively extracted particles reconstituted with ubiquinone-1, which itself was inactive

    Kinetics of photosynthetic electron transfer in artificial vesicles reconstituted with purified complexes from Rhodobacter capsulatus. II. Direct electron transfer between the reaction center and the bc1 complex and role of cytochrome c2.

    No full text
    The cyclic photosynthetic chain of Rhodobacter capsulatus has been reconstituted incorporating into phospholipid liposomes containing ubiquinone-10 two multiprotein complexes: the reaction center and the ubiquinol-cytochrome-c2 reductase (or bc1 complex). 2. In the presence of cytochrome c2 added externally, at concentrations in the range 10-10(4) nM, a flash-induced cyclic electron transfer can be observed. In the presence of antimycin, an inhibitor of the quinone-reducing site of the bc1 complex, the reduction of cytochrome b561 is a consequence of the donation of electrons to the photo-oxidized reaction center. At low ionic strength (10 mM KCl) and at concentrations of cytochrome c2 lower than 1 microM, the rate of this reaction is limited by the concentration of cytochrome c2. At higher concentrations the reduction rate of cytochrome b561 is controlled by the concentration of quinol in the membrane, and, therefore, is increased when the ubiquinone pool is progressively reduced. At saturating concentrations of cytochrome c2 and optimal redox poise, the half-time for cytochrome b561 reduction is about 3 ms. 3. At high ionic stength (200 mM KCl), tenfold higher concentrations of cytochrome c2 are required for promoting equivalent rates of cytochrome-b561 reduction. If the absolute values of these rates are compared with those of the cytochrome-c2-reaction-center electron transfer, it can be concluded that the reaction of oxidized cytochrome c2 with the bc1 complex is rate-limiting and involves electrstatic interactions. 4. A significant rate of intercomplex electron transfer can be observed also in the absence of cytochrome c2; in this case the electron donor to the recation center is the cytochrome c1 of the oxidoreductase complex. The oxidation of cytochrome c1 triggers a normal electron transfer within the bc1 complex. The intercomplex reaction follows second-order kinetics and is slowed at high ionic strength, suggesting a collisional interaction facilitated by electrostatic attraction. From the second-order rate constant of this process, a minimal bidimensional diffusion coefficient for the complexes in the membrane equal to 3 X 10(-11) cm2 s-1 can be evaluated

    Cyclic photosynthetic electron flow in chromatophores: the role of specialized quinone molecules

    No full text
    The oxidoreduction kinetics of the reaction center and cytochromes in isolates membranes from Rhodobacter sphaeroides were studied in relation with the role of ubiquinone

    Differential extraction and structural specificity of specialized ubiquinone molecules in secondary electron transfer in chromatophores from Rhodopseudomonas sphaeroides, Ga.

    No full text
    Solvent extraction of quinone molecules from isolated membranes of Rhodopseudomonas sphaeroides was followed by reconstitution with different quinones types. The electron transport kinetics were evaluated in relation to the quinone molecules inserted in the photosyntetic membranes

    Kinetics of photosynthetic electron transfer in artificial vesicles reconstituted with purified complexes from Rhodobacter capsulatus. I. The interaction of cytochrome c2 with the reaction center.

    No full text
    1. The kinetics of the interaction of cytochrome c2 and photosynthetic reaction centers purified from Rhodobacter capsulatus were studied in proteoliposomes reconstituted with a mixture of phospholipids simulating the native membrane (i.e. containing 25% L-alpha-phosphatidylglycerol). 2. At low ionic strength, the kinetics of cytochrome-c2 oxidation induced by a single turnover flash was very different, depending on the concentration of cytochrome c2: at concentrations lower than 1 microM, the process was strictly bimolecular (second-order rate constant, k = 1.7 x 10(9) M-1 s-1), while at higher concentrations a fast oxidation process (half-time lower than 20 microseconds) became increasingly dominant and encompassed the total process at a cytochrome c2 concentration around 10 microM. From the concentration dependence of the amplitude of this fast phase an association constant for a reaction-center--cytochrome-c2 complex of about 10(5) M-1 was evaluated. From the fraction of photo-oxidized reaction centers promptly re-reduced in the presence of saturating concentrations of externally added cytochrome c2, it was found that in approximately 60% of the centers the cytochrome-c2 site was exposed to the external compartment. 3. Both the second-order oxidation reaction and the formation of the reaction-center--cytochrome-c2 complex were very sensitive to ionic strength. In the presence of 180 mM KCl, the value of the second-order rate constant was decreased to 7.0 x 10(7) M-1 s-1 and no fast oxidation of cytochrome c2 could be observed at 10 microM cytochrome c2. 4. The kinetics of exchange of oxidized cytochrome c2 bound to the reaction center with the reduced form of the same carrier, following a single turnover flash, was studied in double-flash experiments, varying the dark time between photoactivations over the range 30 microseconds to 5ms. The experimental results were analyzed according to aminimal kinetic model relating the amounts of oxidized cytochrome c2 and reaction centers observable after the second flash to the dark time between flashes. This model included the rate constants for the electron transfer between the primary and secondary ubiquinone acceptors of the complex (k1) and for the exchange of cytochrome c2 (k2). Fitting to the experimental results indicated a value of k1 equal to 2.4 x 10(3) s-1 and a lower limit for k2 of approximately 2 x 10(4) s-1 (corresponding to a second-order rate constant of approximately 3 x 10(9) M-1 s-1)
    corecore