127 research outputs found

    Conservatives moral foundations are more densely connected than liberals’ moral foundations

    Get PDF
    We use network psychometrics to map a subsection of moral belief systems predicted by moral foundations theory (MFT). This approach conceptualizes moral systems as networks, with moral beliefs represented as nodes connected by direct relations. As such, it advances a novel test of MFT’s claim that liberals and conservatives have different systems of foundational moral values, which we test in three large datasets (N(Sample1) = 854; N(Sample2) = 679; N(Sample3) = 2,572), from two countries (the United States and New Zealand). Results supported our first hypothesis that liberals’ moral systems show more segregation between individualizing and binding foundations than conservatives. Results showed only weak support for our second hypothesis, that this pattern would be more typical of higher educated than less educated liberals/conservatives. Findings support a systems approach to MFT and show the value of modeling moral belief systems as networks

    The confining string beyond the free-string approximation in the gauge dual of percolation

    Full text link
    We simulate five different systems belonging to the universality class of the gauge dual of three-dimensional random percolation to study the underlying effective string theory at finite temperature. All the data for the finite temperature string tension, when expressed by means of adimensional variables, are nicely described by a unique scaling function. We calculate the first few terms of the string tension up to order T6T^6 and compare to different theoretical predictions. We obtain unambiguous evidence that the coefficients of T2T^2 and T4T^4 terms coincide with those of the Nambu-Goto string, as expected, while the T6T^6 term strongly differs and is characteristic of the universality class of this specific gauge theory.Comment: 13 pages, 3 figure

    Heavy-flavor production and medium properties in high-energy nuclear collisions --What next?

    Get PDF
    Open and hidden heavy-flavor physics in high-energy nuclear collisions are entering a new and exciting stage towards reaching a clearer understanding of the new experimental results with the possibility to link them directly to the advancement in lattice Quantum Chromo-Dynamics (QCD). Recent results from experiments and theoretical developments regarding open and hidden heavy-flavor dynamics have been debated at the Lorentz Workshop Tomography of the Quark-Gluon Plasma with Heavy Quarks, which was held in October 2016 in Leiden, The Netherlands. In this contribution, we summarize identified common understandings and developed strategies for the upcoming five years, which aim at achieving a profound knowledge of the dynamical properties of the quark-gluon plasma

    Deep inelastic inclusive and diffractive scattering at Q2Q^2 values from 25 to 320 GeV2^2 with the ZEUS forward plug calorimeter

    Get PDF
    Deep inelastic scattering and its diffractive component, epeγpeXNep \to e^{\prime}\gamma^* p \to e^{\prime}XN, have been studied at HERA with the ZEUS detector using an integrated luminosity of 52.4 pb1^{-1}. The MXM_X method has been used to extract the diffractive contribution. A wide range in the centre-of-mass energy WW (37 -- 245 GeV), photon virtuality Q2Q^2 (20 -- 450 GeV2^2) and mass MXM_X (0.28 -- 35 GeV) is covered. The diffractive cross section for 2<MX<152 < M_X < 15 GeV rises strongly with WW, the rise becoming steeper as Q2Q^2 increases. The data are also presented in terms of the diffractive structure function, F2D(3)F^{\rm D(3)}_2, of the proton. For fixed Q2Q^2 and fixed MXM_X, \xpom F^{\rm D(3)}_2 shows a strong rise as \xpom \to 0, where \xpom is the fraction of the proton momentum carried by the Pomeron. For Bjorken-x<1103x < 1 \cdot 10^{-3}, \xpom F^{\rm D(3)}_2 shows positive logQ2\log Q^2 scaling violations, while for x5103x \ge 5 \cdot 10^{-3} negative scaling violations are observed. The diffractive structure function is compatible with being leading twist. The data show that Regge factorisation is broken.Comment: 89 pages, 27 figure

    Measurement of the View the tt production cross-section using eμ events with b-tagged jets in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    This paper describes a measurement of the inclusive top quark pair production cross-section (σtt¯) with a data sample of 3.2 fb−1 of proton–proton collisions at a centre-of-mass energy of √s = 13 TeV, collected in 2015 by the ATLAS detector at the LHC. This measurement uses events with an opposite-charge electron–muon pair in the final state. Jets containing b-quarks are tagged using an algorithm based on track impact parameters and reconstructed secondary vertices. The numbers of events with exactly one and exactly two b-tagged jets are counted and used to determine simultaneously σtt¯ and the efficiency to reconstruct and b-tag a jet from a top quark decay, thereby minimising the associated systematic uncertainties. The cross-section is measured to be: σtt¯ = 818 ± 8 (stat) ± 27 (syst) ± 19 (lumi) ± 12 (beam) pb, where the four uncertainties arise from data statistics, experimental and theoretical systematic effects, the integrated luminosity and the LHC beam energy, giving a total relative uncertainty of 4.4%. The result is consistent with theoretical QCD calculations at next-to-next-to-leading order. A fiducial measurement corresponding to the experimental acceptance of the leptons is also presented

    Search for strong gravity in multijet final states produced in pp collisions at √s=13 TeV using the ATLAS detector at the LHC

    Get PDF
    A search is conducted for new physics in multijet final states using 3.6 inverse femtobarns of data from proton-proton collisions at √s = 13TeV taken at the CERN Large Hadron Collider with the ATLAS detector. Events are selected containing at least three jets with scalar sum of jet transverse momenta (HT) greater than 1TeV. No excess is seen at large HT and limits are presented on new physics: models which produce final states containing at least three jets and having cross sections larger than 1.6 fb with HT > 5.8 TeV are excluded. Limits are also given in terms of new physics models of strong gravity that hypothesize additional space-time dimensions

    Search for TeV-scale gravity signatures in high-mass final states with leptons and jets with the ATLAS detector at sqrt [ s ] = 13TeV

    Get PDF
    A search for physics beyond the Standard Model, in final states with at least one high transverse momentum charged lepton (electron or muon) and two additional high transverse momentum leptons or jets, is performed using 3.2 fb−1 of proton–proton collision data recorded by the ATLAS detector at the Large Hadron Collider in 2015 at √s = 13 TeV. The upper end of the distribution of the scalar sum of the transverse momenta of leptons and jets is sensitive to the production of high-mass objects. No excess of events beyond Standard Model predictions is observed. Exclusion limits are set for models of microscopic black holes with two to six extra dimensions
    corecore