51 research outputs found

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    Get PDF

    Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

    Get PDF
    In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure fl ux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defi ned as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (inmost higher eukaryotes and some protists such as Dictyostelium ) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the fi eld understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation it is imperative to delete or knock down more than one autophagy-related gene. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways so not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field

    The flavonoid 4,4′-dimethoxychalcone promotes autophagy-dependent longevity across species

    Get PDF
    Ageing constitutes the most important risk factor for all major chronic ailments, including malignant, cardiovascular and neurodegenerative diseases. However, behavioural and pharmacological interventions with feasible potential to promote health upon ageing remain rare. Here we report the identification of the flavonoid 4,4′- dimethoxychalcone (DMC) as a natural compound with anti-ageing properties. External DMC administration extends the lifespan of yeast, worms and flies, decelerates senescence of human cell cultures, and protects mice from prolonged myocardial ischaemia. Concomitantly, DMC induces autophagy, which is essential for its cytoprotective effects from yeast to mice. This pro-autophagic response induces a conserved systemic change in metabolism, operates independently of TORC1 signalling and depends on specific GATA transcription factors. Notably, we identify DMC in the plant Angelica keiskei koidzumi, to which longevity- and health-promoting effects are ascribed in Asian traditional medicine. In summary, we have identified and mechanistically characterised the conserved longevity-promoting effects of a natural anti-ageing drug

    Über die Synthese von Hydrazinium-Fluorohafnaten

    No full text

    Antioxidant activity of wheat and buckwheat flours

    No full text
    Antioxidative activities of wheat flours (type 500 and wholegrain) and buckwheat flours (light and wholegrain) were tested using 1,1-diphenyl-2-picrylhydrazyl (DPPH·)-scavenging activity, reducing power and chelating activity on Fe2+. Also, the content of the total phenolics of ethanolic extracts was estimated. Polyphenolics content (expressed as gallic acid equivalent, GAE) in wheat flours varied between 37.1 and 137.2 μg GAE/g extract, while its content in buckwheat flour were at least four time higher and ranged between 476.3 and 618.9μg GAE/g extract. Ethanolic extracts of buckwheat flours exhibited higher antioxidant activities in all the assays, except for chelating activity. Regarding all the obtained results, it can be concluded that bakery products produced with buckwheat flour could be regarded as potential functional foods

    Correction

    No full text

    Overexpression of CaMKIIδc in RyR2(R4496C+/-) Knock-In Mice Leads to Altered Intracellular Ca(2+) Handling and Increased Mortality

    No full text
    OBJECTIVES: We investigated whether increased Ca(2+)/calmodulin-dependent kinase II (CaMKII) activity aggravates defective excitation-contraction coupling and proarrhythmic activity in mice expressing R4496C mutated cardiac ryanodine receptors (RyR2). BACKGROUND: RyR2 dysfunction is associated with arrhythmic events in inherited and acquired cardiac disease. METHODS: CaMKIIδc transgenic mice were crossbred with RyR2(R4496C+/-) knock-in mice. RESULTS: Heart weight-to-body weight ratio in CaMKIIδc/RyR2(R4496C) and CaMKIIδc mice was similarly increased approximately 3-fold versus wild-type mice (p < 0.05). Echocardiographic data showed comparable cardiac dilation and impaired contractility in CaMKIIδc/RyR2(R4496C) and CaMKIIδc mice. Sarcoplasmic reticulum Ca(2+) content in isolated myocytes was decreased to a similar extent in CaMKIIδc/RyR2(R4496C) and CaMKIIδc mice. However, relaxation parameters and Ca(2+) decay at 1 Hz were prolonged significantly in CaMKIIδc mice versus CaMKIIδc/RyR2(R4496C) mice. Sarcoplasmic reticulum Ca(2+) spark frequency and characteristics indicated increased sarcoplasmic reticulum Ca(2+) leak in CaMKIIδc/RyR2(R4496C) versus CaMKIIδc myocytes (p < 0.05), most likely because of increased RyR2 phosphorylation. Delayed afterdepolarizations were significantly more frequent with increased amplitudes in CaMKIIδc/RyR2(R4496C) versus CaMKIIδc mice. Increased arrhythmias in vivo (67% vs. 25%; p < 0.05) may explain the increased mortality in CaMKIIδc/RyR2(R4496C) mice, which died prematurely with only 30% alive (vs. 60% for CaMKIIδc, p < 0.05) after 14 weeks. CONCLUSIONS: CaMKIIδc overexpression in RyR2(R4496C+/-) knock-in mice increases the propensity toward triggered arrhythmias, which may impair survival. CaMKII contributes to further destabilization of a mutated RyR2 receptor
    corecore