554 research outputs found

    The Iron Discrepancy in Elliptical Galaxies after ASCA

    Get PDF
    We present estimates for the iron content of the stellar and diffused components of elliptical galaxies, as derived respectively from integrated optical spectra and from ASCA X-ray observations. A macroscopic discrepancy emerges between the expected iron abundances in the hot interstellar medium (ISM) and what is indicated by the X-ray observations, especially when allowance is made for the current iron enrichment by Type Ia supernovae. This strong discrepancy, that in some extreme instances may be as large as a factor of 20\sim 20, calls into question our current understanding of supernova enrichment and chemical evolution of galaxies. We discuss several astrophysical implications of the inferred low iron abundances in the ISM, including the chemical evolution of galaxies and cluster of galaxies, the evolution of gas flows in ellipticals, and the heating of the intracluster medium. Some of the consequences appear hard to accept, and in the attempt to avoid some of these difficulties we explore ways of hiding or diluting iron in the ISM of ellipticals. None of these possibilities appears astrophysically plausible, and we alternatively rise the question of the reliability of iron-L line diagonostic tools. Various thin plasma emission models are shown to give iron abundances that may differ significantly, especially at low temperatures (kT \lsim 1 keV). From a collection of ASCA and other X-ray observatory data, it is shown that current thin plasma codes tend to give very low iron abundances when the temperature of the objects is below 1\sim 1 keV. We conclude that -- besides rethinking the chemical evolution of galaxies -- one should also consider the possibility that existing thin plasma models may incorporate inaccurate atomic physics for the ions responsible for the iron-L complex.Comment: 39 pages, TeX file, 5 figures, Accepted for publication in the Ap

    First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data

    Get PDF
    Spinning neutron stars asymmetric with respect to their rotation axis are potential sources of continuous gravitational waves for ground-based interferometric detectors. In the case of known pulsars a fully coherent search, based on matched filtering, which uses the position and rotational parameters obtained from electromagnetic observations, can be carried out. Matched filtering maximizes the signalto- noise (SNR) ratio, but a large sensitivity loss is expected in case of even a very small mismatch between the assumed and the true signal parameters. For this reason, narrow-band analysis methods have been developed, allowing a fully coherent search for gravitational waves from known pulsars over a fraction of a hertz and several spin-down values. In this paper we describe a narrow-band search of 11 pulsars using data from Advanced LIGO’s first observing run. Although we have found several initial outliers, further studies show no significant evidence for the presence of a gravitational wave signal. Finally, we have placed upper limits on the signal strain amplitude lower than the spin-down limit for 5 of the 11 targets over the bands searched; in the case of J1813-1749 the spin-down limit has been beaten for the first time. For an additional 3 targets, the median upper limit across the search bands is below the spin-down limit. This is the most sensitive narrow-band search for continuous gravitational waves carried out so far

    Fosmid library end sequencing reveals a rarely known genome structure of marine shrimp Penaeus monodon

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The black tiger shrimp (<it>Penaeus monodon</it>) is one of the most important aquaculture species in the world, representing the crustacean lineage which possesses the greatest species diversity among marine invertebrates. Yet, we barely know anything about their genomic structure. To understand the organization and evolution of the <it>P. monodon </it>genome, a fosmid library consisting of 288,000 colonies and was constructed, equivalent to 5.3-fold coverage of the 2.17 Gb genome. Approximately 11.1 Mb of fosmid end sequences (FESs) from 20,926 non-redundant reads representing 0.45% of the <it>P. monodon </it>genome were obtained for repetitive and protein-coding sequence analyses.</p> <p>Results</p> <p>We found that microsatellite sequences were highly abundant in the <it>P. monodon </it>genome, comprising 8.3% of the total length. The density and the average length of microsatellites were evidently higher in comparison to those of other taxa. AT-rich microsatellite motifs, especially poly (AT) and poly (AAT), were the most abundant. High abundance of microsatellite sequences were also found in the transcribed regions. Furthermore, <it>via </it>self-BlastN analysis we identified 103 novel repetitive element families which were categorized into four groups, <it>i.e</it>., 33 WSSV-like repeats, 14 retrotransposons, 5 gene-like repeats, and 51 unannotated repeats. Overall, various types of repeats comprise 51.18% of the <it>P. monodon </it>genome in length. Approximately 7.4% of the FESs contained protein-coding sequences, and the Inhibitor of Apoptosis Protein (IAP) gene and the Innexin 3 gene homologues appear to be present in high abundance in the <it>P. monodon </it>genome.</p> <p>Conclusions</p> <p>The redundancy of various repeat types in the <it>P. monodon </it>genome illustrates its highly repetitive nature. In particular, long and dense microsatellite sequences as well as abundant WSSV-like sequences highlight the uniqueness of genome organization of penaeid shrimp from those of other taxa. These results provide substantial improvement to our current knowledge not only for shrimp but also for marine crustaceans of large genome size.</p

    A gravitational-wave standard siren measurement of the Hubble constant

    Get PDF
    On 17 August 2017, the Advanced LIGO 1 and Virgo 2 detectors observed the gravitational-wave event GW170817-a strong signal from the merger of a binary neutron-star system 3 . Less than two seconds after the merger, a γ-ray burst (GRB 170817A) was detected within a region of the sky consistent with the LIGO-Virgo-derived location of the gravitational-wave source 4-6 . This sky region was subsequently observed by optical astronomy facilities 7 , resulting in the identification 8-13 of an optical transient signal within about ten arcseconds of the galaxy NGC 4993. This detection of GW170817 in both gravitational waves and electromagnetic waves represents the first 'multi-messenger' astronomical observation. Such observations enable GW170817 to be used as a 'standard siren' 14-18 (meaning that the absolute distance to the source can be determined directly from the gravitational-wave measurements) to measure the Hubble constant. This quantity represents the local expansion rate of the Universe, sets the overall scale of the Universe and is of fundamental importance to cosmology. Here we report a measurement of the Hubble constant that combines the distance to the source inferred purely from the gravitational-wave signal with the recession velocity inferred from measurements of the redshift using the electromagnetic data. In contrast to previous measurements, ours does not require the use of a cosmic 'distance ladder' 19 : the gravitational-wave analysis can be used to estimate the luminosity distance out to cosmological scales directly, without the use of intermediate astronomical distance measurements. We determine the Hubble constant to be about 70 kilometres per second per megaparsec. This value is consistent with existing measurements 20,21 , while being completely independent of them. Additional standard siren measurements from future gravitationalwave sources will enable the Hubble constant to be constrained to high precision

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    All-sky search for long-duration gravitational wave transients with initial LIGO

    Get PDF
    We present the results of a search for long-duration gravitational wave transients in two sets of data collected by the LIGO Hanford and LIGO Livingston detectors between November 5, 2005 and September 30, 2007, and July 7, 2009 and October 20, 2010, with a total observational time of 283.0 days and 132.9 days, respectively. The search targets gravitational wave transients of duration 10-500 s in a frequency band of 40-1000 Hz, with minimal assumptions about the signal waveform, polarization, source direction, or time of occurrence. All candidate triggers were consistent with the expected background; as a result we set 90% confidence upper limits on the rate of long-duration gravitational wave transients for different types of gravitational wave signals. For signals from black hole accretion disk instabilities, we set upper limits on the source rate density between 3.4×10-5 and 9.4×10-4 Mpc-3 yr-1 at 90% confidence. These are the first results from an all-sky search for unmodeled long-duration transient gravitational waves. © 2016 American Physical Society

    All-sky search for long-duration gravitational wave transients with initial LIGO

    Get PDF
    We present the results of a search for long-duration gravitational wave transients in two sets of data collected by the LIGO Hanford and LIGO Livingston detectors between November 5, 2005 and September 30, 2007, and July 7, 2009 and October 20, 2010, with a total observational time of 283.0 days and 132.9 days, respectively. The search targets gravitational wave transients of duration 10-500 s in a frequency band of 40-1000 Hz, with minimal assumptions about the signal waveform, polarization, source direction, or time of occurrence. All candidate triggers were consistent with the expected background; as a result we set 90% confidence upper limits on the rate of long-duration gravitational wave transients for different types of gravitational wave signals. For signals from black hole accretion disk instabilities, we set upper limits on the source rate density between 3.4×10-5 and 9.4×10-4 Mpc-3 yr-1 at 90% confidence. These are the first results from an all-sky search for unmodeled long-duration transient gravitational waves. © 2016 American Physical Society

    Supplement: "Localization and broadband follow-up of the gravitational-wave transient GW150914" (2016, ApJL, 826, L13)

    Get PDF
    This Supplement provides supporting material for Abbott et al. (2016a). We briefly summarize past electromagnetic (EM) follow-up efforts as well as the organization and policy of the current EM follow-up program. We compare the four probability sky maps produced for the gravitational-wave transient GW150914, and provide additional details of the EM follow-up observations that were performed in the different bands
    corecore