540 research outputs found

    A Lightweight Privacy-Preserved Spatial and Temporal Aggregation of Energy Data

    Get PDF
    Smart grid provides fine-grained real time energy consumption, and it is able to improve the efficiency of energy management. It enables the collection of energy consumption data from consumer and hence has raised serious privacy concerns. Energy consumption data, a form of personal information that reveals behavioral patterns can be used to identify electrical appliances being used by the user through the electricity load signature, thus making it possible to further reveal the residency pattern of a consumer’s household or appliances usage habit. This paper proposes to enhance the privacy of energy con- sumption data by enabling the utility to retrieve the aggregated spatial and temporal consumption without revealing individual energy consumption. We use a lightweight cryptographic mech- anism to mask the energy consumption data by adding random noises to each energy reading and use Paillier’s additive homo- morphic encryption to protect the noises. When summing up the masked energy consumption data for both Spatial and Temporal aggregation, the noises cancel out each other, hence resulting in either the total sum of energy consumed in a neighbourhood at a particular time, or the total sum of energy consumed by a household in a day. No third party is able to derive the energy consumption pattern of a household in real time. A proof-of- concept was implemented to demonstrate the feasibility of the system, and the results show that the system can be efficiently deployed on a low-cost computing platform

    A Lightweight Privacy-Preserved Spatial and Temporal Aggregation of Energy Data

    Get PDF
    Smart grid provides fine-grained real time energy consumption, and it is able to improve the efficiency of energy management. It enables the collection of energy consumption data from consumer and hence has raised serious privacy concerns. Energy consumption data, a form of personal information that reveals behavioral patterns can be used to identify electrical appliances being used by the user through the electricity load signature, thus making it possible to further reveal the residency pattern of a consumer’s household or appliances usage habit. This paper proposes to enhance the privacy of energy con- sumption data by enabling the utility to retrieve the aggregated spatial and temporal consumption without revealing individual energy consumption. We use a lightweight cryptographic mech- anism to mask the energy consumption data by adding random noises to each energy reading and use Paillier’s additive homo- morphic encryption to protect the noises. When summing up the masked energy consumption data for both Spatial and Temporal aggregation, the noises cancel out each other, hence resulting in either the total sum of energy consumed in a neighbourhood at a particular time, or the total sum of energy consumed by a household in a day. No third party is able to derive the energy consumption pattern of a household in real time. A proof-of- concept was implemented to demonstrate the feasibility of the system, and the results show that the system can be efficiently deployed on a low-cost computing platform

    A lightweight privacy-preserved spatial and temporal aggregation of energy data

    Get PDF
    Smart grid provides fine-grained real time energy consumption, and it is able to improve the efficiency of energy management. It enables the collection of energy consumption data from consumer and hence has raised serious privacy concerns. Energy consumption data, a form of personal information that reveals behavioral patterns can be used to identify electrical appliances being used by the user through the electricity load signature, thus making it possible to further reveal the residency pattern of a consumer’s household or appliances usage habit. This paper proposes to enhance the privacy of energy con- sumption data by enabling the utility to retrieve the aggregated spatial and temporal consumption without revealing individual energy consumption. We use a lightweight cryptographic mech- anism to mask the energy consumption data by adding random noises to each energy reading and use Paillier’s additive homo- morphic encryption to protect the noises. When summing up the masked energy consumption data for both Spatial and Temporal aggregation, the noises cancel out each other, hence resulting in either the total sum of energy consumed in a neighbourhood at a particular time, or the total sum of energy consumed by a household in a day. No third party is able to derive the energy consumption pattern of a household in real time. A proof-of- concept was implemented to demonstrate the feasibility of the system, and the results show that the system can be efficiently deployed on a low-cost computing platform

    Real-Time Monitoring and Analysis of Zebrafish Electrocardiogram with Anomaly Detection.

    Get PDF
    Heart disease is the leading cause of mortality in the U.S. with approximately 610,000 people dying every year. Effective therapies for many cardiac diseases are lacking, largely due to an incomplete understanding of their genetic basis and underlying molecular mechanisms. Zebrafish (Danio rerio) are an excellent model system for studying heart disease as they enable a forward genetic approach to tackle this unmet medical need. In recent years, our team has been employing electrocardiogram (ECG) as an efficient tool to study the zebrafish heart along with conventional approaches, such as immunohistochemistry, DNA and protein analyses. We have overcome various challenges in the small size and aquatic environment of zebrafish in order to obtain ECG signals with favorable signal-to-noise ratio (SNR), and high spatial and temporal resolution. In this paper, we highlight our recent efforts in zebrafish ECG acquisition with a cost-effective simplified microelectrode array (MEA) membrane providing multi-channel recording, a novel multi-chamber apparatus for simultaneous screening, and a LabVIEW program to facilitate recording and processing. We also demonstrate the use of machine learning-based programs to recognize specific ECG patterns, yielding promising results with our current limited amount of zebrafish data. Our solutions hold promise to carry out numerous studies of heart diseases, drug screening, stem cell-based therapy validation, and regenerative medicine

    Inhibition of pluripotency networks by the Rb tumor suppressor restricts reprogramming and tumorigenesis

    Get PDF
    Mutations in the retinoblastoma tumor suppressor gene Rb are involved in many forms of human cancer. In this study, we investigated the early consequences of inactivating Rb in the context of cellular reprogramming. We found that Rb inactivation promotes the reprogramming of differentiated cells to a pluripotent state. Unexpectedly, this effect is cell cycle independent, and instead reflects direct binding of Rb to pluripotency genes, including Sox2 and Oct4, which leads to a repressed chromatin state. More broadly, this regulation of pluripotency networks and Sox2 in particular is critical for the initiation of tumors upon loss of Rb in mice. These studies therefore identify Rb as a global transcriptional repressor of pluripotency networks, providing a molecular basis for previous reports about its involvement in cell fate pliability, and implicate misregulation of pluripotency factors such as Sox2 in tumorigenesis related to loss of Rb function

    Inhibition of pluripotency networks by the Rb tumor suppressor restricts reprogramming and tumorigenesis

    Get PDF
    Mutations in the retinoblastoma tumor suppressor gene Rb are involved in many forms of human cancer. In this study, we investigated the early consequences of inactivating Rb in the context of cellular reprogramming. We found that Rb inactivation promotes the reprogramming of differentiated cells to a pluripotent state. Unexpectedly, this effect is cell cycle independent, and instead reflects direct binding of Rb to pluripotency genes, including Sox2 and Oct4, which leads to a repressed chromatin state. More broadly, this regulation of pluripotency networks and Sox2 in particular is critical for the initiation of tumors upon loss of Rb in mice. These studies therefore identify Rb as a global transcriptional repressor of pluripotency networks, providing a molecular basis for previous reports about its involvement in cell fate pliability, and implicate misregulation of pluripotency factors such as Sox2 in tumorigenesis related to loss of Rb function

    Tubeless video-assisted thoracic surgery for pulmonary ground-glass nodules: expert consensus and protocol (Guangzhou)

    Get PDF

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe
    corecore