7 research outputs found

    Rapid Surface Rupture Mapping from Satellite Data: The 2023 KahramanmaraƟ, Turkey (TĂŒrkiye), Earthquake Sequence

    No full text
    The 6 February 2023 KahramanmaraƟ, Turkey (TĂŒrkiye), earthquake sequence produced > 500 km of surface rupture primarily on the left-lateral East Anatolian (~345 km) and Çardak (~175 km) faults. Constraining the length and magnitude of surface displacement on the causative faults is critical for loss estimates, recovery efforts, rapid identification of impacted infrastructure, and fault displacement hazard analysis. To support these efforts, we rapidly mapped the surface rupture from satellite data with support from remote sensing and field teams, and released the results to the public in near-real time. Detailed surface rupture mapping commenced on 7 February and continued as high-resolution (< 1.0 m/pixel) optical images from WorldView satellites (2023 Maxar) became available. We interpreted the initial simplified rupture trace from subpixel offset fields derived from Advanced Land Observation Satellite2 and Sentinel-1A synthetic aperture radar image pairs available on 8 and 10 February, respectively. The mapping was released publicly on 10 February, with frequent updates, and published in final form four months postearthquake (Reitman, Briggs, et al., 2023). This publicly available, rapid mapping helped guide fieldwork and constrained U.S. Geological Survey finite-fault and loss estimate models, as well as stress change estimates and dynamic rupture models

    Fault coupling and potential for earthquakes on the creeping section of the central San Andreas Fault

    No full text
    The 150 km long central section of the San Andreas Fault (CSAF) in central California creeps at the surface and has not produced a large earthquake historically. However, sections of the San Andreas Fault to the north and south are known to have ruptured repeatedly in M~7-8 earthquakes. It is currently unclear whether the creeping CSAF could rupture in large earthquakes, either individually or along with earthquakes on the locked sections to the north and south. We invert Global Positioning System and interferometric synthetic aperture radar data with elastic block models to estimate the degree of locking on the CSAF and place bounds on the moment accumulation rate on the fault. We find that the inferred moment accumulation rate is highly dependent on the long-term fault slip rate, which is poorly constrained along the CSAF. The inferred moment accumulation rate, normalized by shear modulus, ranges from 3.28 x 104 to 5.85 x 107 m3/yr, which is equivalent to a Mw = 5.5-7.2 earthquake every 150 years for a long-term slip rate of 26 mm/yr and Mw = 7.3-7.65 for a long-term slip rate of 34 mm/yr. The comparisons of slip distributions with microseismicity and repeating earthquakes indicate a possible locked patch between 10 and 20 km depth on the CSAF that could potentially rupture with Mw = 6.5

    Segmentation and supercycles: A catalog of earthquake rupture patterns from the Sumatran Sunda Megathrust and other well-studied faults worldwide

    No full text
    After more than 100 years of earthquake research, earthquake forecasting, which relies on knowledge of past fault rupture patterns, has become the foundation for societal defense against seismic natural disasters. A concept that has come into focus more recently is that rupture segmentation and cyclicity can be complex, and that a characteristic earthquake model is too simple to adequately describe much of fault behavior. Nevertheless, recognizable patterns in earthquake recurrence emerge from long, high resolution, spatially distributed chronologies. Researchers now seek to discover the maximum, minimum, and typical rupture areas; the distribution, variability, and spatial applicability of recurrence intervals; and patterns of earthquake clustering in space and time. The term “supercycle” has been used to describe repeating longer periods of elastic strain accumulation and release that involve multiple fault ruptures. However, this term has become very broadly applied, lumping together several distinct phenomena that likely have disparate underlying causes. We divide earthquake cycle behavior into four major classes that have different implications for seismic hazard and fault mechanics: 1) quasi-periodic similar ruptures, 2) clustered similar ruptures, 3) clustered complementary ruptures/rupture cascades, and 4) superimposed cycles. “Segmentation” is likewise an ambiguous term; we identify “master segments” and “asperities” as defined by barriers to fault rupture. These barriers may be persistent (rarely or never traversed), frequent (occasionally traversed), or ephemeral (changing location from cycle to cycle). We compile a catalog of the historical and paleoseismic evidence that currently exists for each of these types of behavior on major well-studied faults worldwide. Due to the unique level of paleoseismic and paleogeodetic detail provided by the coral microatoll technique, the Sumatran Sunda megathrust provides one of the most complete records over multiple earthquake rupture cycles. Long historical records of earthquakes along the South American and Japanese subduction zones are also vital contributors to our catalog, along with additional data compiled from subduction zones in Cascadia, Alaska, and Middle America, as well as the North Anatolian and Dead Sea strike-slip faults in the Middle East. We find that persistent and frequent barriers, rupture cascades, superimposed cycles, and quasi-periodic similar ruptures are common features of most major faults. Clustered similar ruptures do not appear to be common, but broad overlap zones between neighboring segments do occur. Barrier regions accommodate slip through reduced interseismic coupling, slow slip events, and/or smaller more localized ruptures, and are frequently associated with structural features such as subducting seafloor relief or fault trace discontinuities. This catalog of observations provides a basis for exploring and modeling root causes of rupture segmentation and cycle behavior. We expect that researchers will recognize similar behavior styles on other major faults around the world.Ministry of Education (MOE)National Research Foundation (NRF)Published versio
    corecore