119 research outputs found

    Diabetes and colorectal cancer risk: A new look at molecular mechanisms and potential role of novel antidiabetic agents

    Get PDF
    Epidemiological data have demonstrated a significant association between the presence of type 2 diabetes mellitus (T2DM) and the development of colorectal cancer (CRC). Chronic hyperglycemia, insulin resistance, oxidative stress, and inflammation, the processes inherent to T2DM, also play active roles in the onset and progression of CRC. Recently, small dense low-density lipoprotein (LDL) particles, a typical characteristic of diabetic dyslipidemia, emerged as another possible underlying link between T2DM and CRC. Growing evidence suggests that antidiabetic medications may have beneficial effects in CRC prevention. According to findings from a limited number of preclinical and clinical studies, glucagon-like peptide-1 receptor agonists (GLP-1RAs) could be a promising strategy in reducing the incidence of CRC in patients with diabetes. However, available findings are inconclusive, and further studies are required. In this review, novel evidence on molecular mechanisms linking T2DM with CRC development, progression, and survival will be discussed. In addition, the potential role of GLP-1RAs therapies in CRC prevention will also be evaluated

    Atherosclerosis development and progression: the role of atherogenic small, dense LDL.

    Get PDF
    Atherosclerosis is responsible for large cardiovascular mortality in many countries globally. It has been shown over the last decades that the reduction of atherosclerotic progression is a critical factor for preventing future cardiovascular events. Low-density lipoproteins (LDL) have been successfully targeted, and their reduction is one of the key preventing measures in patients with atherosclerotic disease. LDL particles are pivotal for the formation and progression of atherosclerotic plaques; yet, they are quite heterogeneous, and smaller, denser LDL species are the most atherogenic. These particles have greater arterial entry and retention, higher susceptibility to oxidation, as well as reduced affinity for the LDL receptor. Increased proportion of small, dense LDL particles is an integral part of the atherogenic lipoprotein phenotype, the most common form of dyslipidemia associated with insulin resistance. Recent data suggest that both genetic and epigenetic factors might induce expression of this specific lipid pattern. In addition, a typical finding of increased small, dense LDL particles was confirmed in different categories of patients with elevated cardiovascular risk. Small, dense LDL is an independent risk factor for cardiovascular diseases, which emphasizes the clinical importance of both the quality and the quantity of LDL. An effective management of atherosclerotic disease should take into account the presence of small, dense LDL in order to prevent cardiovascular complications

    A New Look at Novel Cardiovascular Risk Biomarkers: The Role of Atherogenic Lipoproteins and Innovative Antidiabetic Therapies

    Get PDF
    The presence of residual cardiovascular disease (CVD) risk is a current dilemma in clinical practice; indeed, despite optimal management and treatment, a considerable proportion of patients still undergo major CV events. Novel lipoprotein biomarkers are suggested as possible targets for improving the outcomes of patients at higher risk for CVD, and their impact on major CV events and mortality have previously been investigated. Innovative antidiabetic therapies have recently shown a significant reduction in atherogenic lipoproteins, beyond their effects on glucose parameters; it has also been suggested that such anti-atherogenic effect may represent a valuable mechanistic explanation for the cardiovascular benefit of, at least, some of the novel antidiabetic agents, such as glucagon-like peptide-1 receptor agonists. This emphasizes the need for further research in the field in order to clearly assess the effects of innovative treatments on different novel biomarkers, including atherogenic lipoproteins, such as small dense low-density lipoprotein (LDL), lipoprotein(a) (Lp(a)) and dysfunctional high-density lipoprotein (HDL). The current article discusses the clinical importance of novel lipid biomarkers for better management of patients in order to overcome residual cardiovascular risk

    Universality of pseudogap and emergent order in lightly doped Mott insulators

    Get PDF
    It is widely believed that high-temperature superconductivity in the cuprates emerges from doped Mott insulators. The physics of the parent state seems deceivingly simple: The hopping of the electrons from site to site is prohibited because their on-site Coulomb repulsion U is larger than the kinetic energy gain t. When doping these materials by inserting a small percentage of extra carriers, the electrons become mobile but the strong correlations from the Mott state are thought to survive; inhomogeneous electronic order, a mysterious pseudogap and, eventually, superconductivity appear. How the insertion of dopant atoms drives this evolution is not known, nor whether these phenomena are mere distractions specific to hole-doped cuprates or represent the genuine physics of doped Mott insulators. Here, we visualize the evolution of the electronic states of (Sr1-xLax)2IrO4, which is an effective spin-1/2 Mott insulator like the cuprates, but is chemically radically different. Using spectroscopic-imaging STM, we find that for doping concentration of x=5%, an inhomogeneous, phase separated state emerges, with the nucleation of pseudogap puddles around clusters of dopant atoms. Within these puddles, we observe the same glassy electronic order that is so iconic for the underdoped cuprates. Further, we illuminate the genesis of this state using the unique possibility to localize dopant atoms on topographs in these samples. At low doping, we find evidence for much deeper trapping of carriers compared to the cuprates. This leads to fully gapped spectra with the chemical potential at mid-gap, which abruptly collapse at a threshold of around 4%. Our results clarify the melting of the Mott state, and establish phase separation and electronic order as generic features of doped Mott insulators.Comment: This version contains the supplementary information and small updates on figures and tex

    Mapping the unconventional orbital texture in topological crystalline insulators

    Get PDF
    The newly discovered topological crystalline insulators (TCIs) harbor a complex band structure involving multiple Dirac cones. These materials are potentially highly tunable by external electric field, temperature or strain and could find future applications in field-effect transistors, photodetectors, and nano-mechanical systems. Theoretically, it has been predicted that different Dirac cones, offset in energy and momentum-space, might harbor vastly different orbital character, a unique property which if experimentally realized, would present an ideal platform for accomplishing new spintronic devices. However, the orbital texture of the Dirac cones, which is of immense importance in determining a variety of materials properties, still remains elusive in TCIs. Here, we unveil the orbital texture in a prototypical TCI Pb1x_{1-x}Snx_xSe. By using Fourier-transform (FT) scanning tunneling spectroscopy (STS) we measure the interference patterns produced by the scattering of surface state electrons. We discover that the intensity and energy dependences of FTs show distinct characteristics, which can directly be attributed to orbital effects. Our experiments reveal the complex band topology involving two Lifshitz transitions and establish the orbital nature of the Dirac bands in this new class of topological materials, which could provide a different pathway towards future quantum applications

    Quasiparticle interference and strong electron-mode coupling in the quasi-one-dimensional bands of Sr2RuO4

    Get PDF
    The single-layered ruthenate Sr2_2RuO4_4 has attracted a great deal of interest as a spin-triplet superconductor with an order parameter that may potentially break time reversal invariance and host half-quantized vortices with Majorana zero modes. While the actual nature of the superconducting state is still a matter of controversy, it has long been believed that it condenses from a metallic state that is well described by a conventional Fermi liquid. In this work we use a combination of Fourier transform scanning tunneling spectroscopy (FT-STS) and momentum resolved electron energy loss spectroscopy (M-EELS) to probe interaction effects in the normal state of Sr2_2RuO4_4. Our high-resolution FT-STS data show signatures of the \beta-band with a distinctly quasi-one-dimensional (1D) character. The band dispersion reveals surprisingly strong interaction effects that dramatically renormalize the Fermi velocity, suggesting that the normal state of Sr2_2RuO4_4 is that of a 'correlated metal' where correlations are strengthened by the quasi 1D nature of the bands. In addition, kinks at energies of approximately 10meV, 38meV and 70meV are observed. By comparing STM and M-EELS data we show that the two higher energy features arise from coupling with collective modes. The strong correlation effects and the kinks in the quasi 1D bands may provide important information for understanding the superconducting state. This work opens up a unique approach to revealing the superconducting order parameter in this compound

    STM imaging of symmetry-breaking structural distortion in the Bi-based cuprate superconductors

    Get PDF
    A complicating factor in unraveling the theory of high-temperature (high-Tc) superconductivity is the presence of a "pseudogap" in the density of states, whose origin has been debated since its discovery [1]. Some believe the pseudogap is a broken symmetry state distinct from superconductivity [2-4], while others believe it arises from short-range correlations without symmetry breaking [5,6]. A number of broken symmetries have been imaged and identified with the pseudogap state [7,8], but it remains crucial to disentangle any electronic symmetry breaking from pre-existing structural symmetry of the crystal. We use scanning tunneling microscopy (STM) to observe an orthorhombic structural distortion across the cuprate superconducting Bi2Sr2Can-1CunO2n+4+x (BSCCO) family tree, which breaks two-dimensional inversion symmetry in the surface BiO layer. Although this inversion symmetry breaking structure can impact electronic measurements, we show from its insensitivity to temperature, magnetic field, and doping, that it cannot be the long-sought pseudogap state. To detect this picometer-scale variation in lattice structure, we have implemented a new algorithm which will serve as a powerful tool in the search for broken symmetry electronic states in cuprates, as well as in other materials.Comment: 4 figure

    Global variation in diabetes diagnosis and prevalence based on fasting glucose and hemoglobin A1c

    Get PDF
    Fasting plasma glucose (FPG) and hemoglobin A1c (HbA1c) are both used to diagnose diabetes, but these measurements can identify different people as having diabetes. We used data from 117 population-based studies and quantified, in different world regions, the prevalence of diagnosed diabetes, and whether those who were previously undiagnosed and detected as having diabetes in survey screening, had elevated FPG, HbA1c or both. We developed prediction equations for estimating the probability that a person without previously diagnosed diabetes, and at a specific level of FPG, had elevated HbA1c, and vice versa. The age-standardized proportion of diabetes that was previously undiagnosed and detected in survey screening ranged from 30% in the high-income western region to 66% in south Asia. Among those with screen-detected diabetes with either test, the age-standardized proportion who had elevated levels of both FPG and HbA1c was 29-39% across regions; the remainder had discordant elevation of FPG or HbA1c. In most low- and middle-income regions, isolated elevated HbA1c was more common than isolated elevated FPG. In these regions, the use of FPG alone may delay diabetes diagnosis and underestimate diabetes prevalence. Our prediction equations help allocate finite resources for measuring HbA1c to reduce the global shortfall in diabetes diagnosis and surveillance

    Repositioning of the global epicentre of non-optimal cholesterol

    Get PDF
    High blood cholesterol is typically considered a feature of wealthy western countries(1,2). However, dietary and behavioural determinants of blood cholesterol are changing rapidly throughout the world(3) and countries are using lipid-lowering medications at varying rates. These changes can have distinct effects on the levels of high-density lipoprotein (HDL) cholesterol and non-HDL cholesterol, which have different effects on human health(4,5). However, the trends of HDL and non-HDL cholesterol levels over time have not been previously reported in a global analysis. Here we pooled 1,127 population-based studies that measured blood lipids in 102.6 million individuals aged 18 years and older to estimate trends from 1980 to 2018 in mean total, non-HDL and HDL cholesterol levels for 200 countries. Globally, there was little change in total or non-HDL cholesterol from 1980 to 2018. This was a net effect of increases in low- and middle-income countries, especially in east and southeast Asia, and decreases in high-income western countries, especially those in northwestern Europe, and in central and eastern Europe. As a result, countries with the highest level of non-HDL cholesterol-which is a marker of cardiovascular riskchanged from those in western Europe such as Belgium, Finland, Greenland, Iceland, Norway, Sweden, Switzerland and Malta in 1980 to those in Asia and the Pacific, such as Tokelau, Malaysia, The Philippines and Thailand. In 2017, high non-HDL cholesterol was responsible for an estimated 3.9 million (95% credible interval 3.7 million-4.2 million) worldwide deaths, half of which occurred in east, southeast and south Asia. The global repositioning of lipid-related risk, with non-optimal cholesterol shifting from a distinct feature of high-income countries in northwestern Europe, north America and Australasia to one that affects countries in east and southeast Asia and Oceania should motivate the use of population-based policies and personal interventions to improve nutrition and enhance access to treatment throughout the world.Peer reviewe
    corecore