15 research outputs found

    Synchronization in complex networks

    Get PDF
    Synchronization processes in populations of locally interacting elements are in the focus of intense research in physical, biological, chemical, technological and social systems. The many efforts devoted to understand synchronization phenomena in natural systems take now advantage of the recent theory of complex networks. In this review, we report the advances in the comprehension of synchronization phenomena when oscillating elements are constrained to interact in a complex network topology. We also overview the new emergent features coming out from the interplay between the structure and the function of the underlying pattern of connections. Extensive numerical work as well as analytical approaches to the problem are presented. Finally, we review several applications of synchronization in complex networks to different disciplines: biological systems and neuroscience, engineering and computer science, and economy and social sciences.Comment: Final version published in Physics Reports. More information available at http://synchronets.googlepages.com

    Networks of noisy oscillators with correlated degree and frequency dispersion

    Get PDF
    We investigate how correlations between the diversity of the connectivity of networks and the dynamics at their nodes affect the macroscopic behavior. In particular, we study the synchronization transition of coupled stochastic phase oscillators that represent the node dynamics. Crucially in our work, the variability in the number of connections of the nodes is correlated with the width of the frequency distribution of the oscillators. By numerical simulations on Erd\"os-R\'enyi networks, where the frequencies of the oscillators are Gaussian distributed, we make the counterintuitive observation that an increase in the strength of the correlation is accompanied by an increase in the critical coupling strength for the onset of synchronization. We further observe that the critical coupling can solely depend on the average number of connections or even completely lose its dependence on the network connectivity. Only beyond this state, a weighted mean-field approximation breaks down. If noise is present, the correlations have to be stronger to yield similar observations.Comment: 6 pages, 2 figure

    The Kuramoto model in complex networks

    Get PDF
    181 pages, 48 figures. In Press, Accepted Manuscript, Physics Reports 2015 Acknowledgments We are indebted with B. Sonnenschein, E. R. dos Santos, P. Schultz, C. Grabow, M. Ha and C. Choi for insightful and helpful discussions. T.P. acknowledges FAPESP (No. 2012/22160-7 and No. 2015/02486-3) and IRTG 1740. P.J. thanks founding from the China Scholarship Council (CSC). F.A.R. acknowledges CNPq (Grant No. 305940/2010-4) and FAPESP (Grants No. 2011/50761-2 and No. 2013/26416-9) for financial support. J.K. would like to acknowledge IRTG 1740 (DFG and FAPESP).Peer reviewedPreprin

    Critical phenomena in complex networks

    Full text link
    The combination of the compactness of networks, featuring small diameters, and their complex architectures results in a variety of critical effects dramatically different from those in cooperative systems on lattices. In the last few years, researchers have made important steps toward understanding the qualitatively new critical phenomena in complex networks. We review the results, concepts, and methods of this rapidly developing field. Here we mostly consider two closely related classes of these critical phenomena, namely structural phase transitions in the network architectures and transitions in cooperative models on networks as substrates. We also discuss systems where a network and interacting agents on it influence each other. We overview a wide range of critical phenomena in equilibrium and growing networks including the birth of the giant connected component, percolation, k-core percolation, phenomena near epidemic thresholds, condensation transitions, critical phenomena in spin models placed on networks, synchronization, and self-organized criticality effects in interacting systems on networks. We also discuss strong finite size effects in these systems and highlight open problems and perspectives.Comment: Review article, 79 pages, 43 figures, 1 table, 508 references, extende

    Dynamics On and Of Complex Networks: Functional Communities and Epidemic Spreading

    Get PDF
    The work presented in this thesis focusses on two topics: functional communities and epidemic spreading on dynamic networks. The first part of the thesis focuses on a functionally-based definition of community structure for complex networks. In particular, we consider networks whose function is enhanced by the ability to synchronize and/or by resilience to node failures. For networks whose functional performance is dependent on these processes, we propose a method that divides a given network into communities based on maximizing a function of the largest eigenvalues of the adjacency matrices of the resulting communities. We also explore the differences between the partitions obtained by our function-based method and the structure-based modularity approach. A major finding is that, in many cases, modularity-based partitions do almost as well as the function-based method in finding functional communities, even though modularity does not specifically incorporate consideration of function. We also discuss the spectral properties of the networks with community structure, relevant for the case of functional communities studied in this thesis. In the second part of the thesis, we study a discrete time SIR model on dynamic networks. In our dynamic network model, we consider the case where the nodes in the network change their links both in response to the disease and also due to social dynamics. We assume that the individuals trying to make new connections mix randomly, and, with a certain probability, we also allow for the formation of new susceptible-infected links. We find that increasing the social mixing dynamics inhibits the disease's ability to spread in certain cases. This occurs because susceptibles who randomly disconnect from infected individuals preferentially reconnect to other susceptibles, inhibiting the disease spread. Finally, we also extend our dynamic network model to take into account the case of hidden infection. Here we find that, as expected, the disease spreads more readily if there is an initial time period during which an individual is infectious but unaware of the infection

    Evolving and adaptive strategies for consensus and synchronization of multi-agent systems

    Get PDF
    We investigate evolving and adaptive strategies, in network of dynamical agents, for solving general types of consensus and synchronization. First, we analyse the problem of max/min consensus in directed networks of integrators. Extending edge snapping method with a three-well potential, we are able to show the effectiveness of our strategy to achieve general types of consensus, different from the average. Theoretical results are validated via a number of numerical examples. Then we move to synchronization of coupled non identical oscillators. We design an evolutionary strategy for network synchronization. Our results suggest that heterogeneity is the driving force determining the evolution of state-dependent functional networks. Minimal emergent networks show enhanced synchronization properties and high levels of degree-frequency assortativity. We analyse networks of N = 100 and N = 1000 Kuramoto oscillators showing that hubs in the network tend to emerge as nodes' heterogeneity is increased. Finally, we study synchronization of multi-agent systems from a contraction theory viewpoint. Contraction theory is a useful tool to study convergence of dynamical systems and networks, recently proposed in the literature. In detail, we recall three strategies: virtual systems method, convergence to a flow-invariant subspace and hierarchical approach. While the former is simple to apply, the latter is suited for larger networks

    Complex Systems: Nonlinearity and Structural Complexity in spatially extended and discrete systems

    Get PDF
    Resumen Esta Tesis doctoral aborda el estudio de sistemas de muchos elementos (sistemas discretos) interactuantes. La fenomenología presente en estos sistemas esta dada por la presencia de dos ingredientes fundamentales: (i) Complejidad dinámica: Las ecuaciones del movimiento que rigen la evolución de los constituyentes son no lineales de manera que raramente podremos encontrar soluciones analíticas. En el espacio de fases de estos sistemas pueden coexistir diferentes tipos de trayectorias dinámicas (multiestabilidad) y su topología puede variar enormemente dependiendo de dos parámetros usados en las ecuaciones. La conjunción de dinámica no lineal y sistemas de muchos grados de libertad (como los que aquí se estudian) da lugar a propiedades emergentes como la existencia de soluciones localizadas en el espacio, sincronización, caos espacio-temporal, formación de patrones, etc... (ii) Complejidad estructural: Se refiere a la existencia de un alto grado de aleatoriedad en el patrón de las interacciones entre los componentes. En la mayoría de los sistemas estudiados esta aleatoriedad se presenta de forma que la descripción de la influencia del entorno sobre un único elemento del sistema no puede describirse mediante una aproximación de campo medio. El estudio de estos dos ingredientes en sistemas extendidos se realizará de forma separada (Partes I y II de esta Tesis) y conjunta (Parte III). Si bien en los dos primeros casos la fenomenología introducida por cada fuente de complejidad viene siendo objeto de amplios estudios independientes a lo largo de los últimos años, la conjunción de ambas da lugar a un campo abierto y enormemente prometedor, donde la interdisciplinariedad concerniente a los campos de aplicación implica un amplio esfuerzo de diversas comunidades científicas. En particular, este es el caso del estudio de la dinámica en sistemas biológicos cuyo análisis es difícil de abordar con técnicas exclusivas de la Bioquímica, la Física Estadística o la Física Matemática. En definitiva, el objetivo marcado en esta Tesis es estudiar por separado dos fuentes de complejidad inherentes a muchos sistemas de interés para, finalmente, estar en disposición de atacar con nuevas perspectivas problemas relevantes para la Física de procesos celulares, la Neurociencia, Dinámica Evolutiva, etc..

    Development of structural correlations and synchronization from adaptive rewiring in networks of Kuramoto oscillators

    Get PDF
    L.P. acknowledges support from the National Science Foundation Graduate Research Fellowship Program. J.K. acknowledges support from the National Science Foundation Graduate Research Fellowship Program and NIH T32-EB020087, PD: Felix W. Wehrli. D.S.B. also acknowledges support from the John D. and Catherine T. MacArthur Foundation, the Alfred P. Sloan Foundation, and the National Science Foundation (BCS-1441502, CAREER PHY-1554488, BCS-1631550, and CNS-1626008). We also thank two anonymous reviewers whose comments greatly improved the quality of this work. The content is solely the responsibility of the authors and does not necessarily represent the official views of any of the funding agencies.Peer reviewedPublisher PD
    corecore