1,666 research outputs found

    Stationary and Mobile Target Detection using Mobile Wireless Sensor Networks

    Full text link
    In this work, we study the target detection and tracking problem in mobile sensor networks, where the performance metrics of interest are probability of detection and tracking coverage, when the target can be stationary or mobile and its duration is finite. We propose a physical coverage-based mobility model, where the mobile sensor nodes move such that the overlap between the covered areas by different mobile nodes is small. It is shown that for stationary target scenario the proposed mobility model can achieve a desired detection probability with a significantly lower number of mobile nodes especially when the detection requirements are highly stringent. Similarly, when the target is mobile the coverage-based mobility model produces a consistently higher detection probability compared to other models under investigation.Comment: 7 pages, 12 figures, appeared in INFOCOM 201

    Networking Behavior in Thin Film and Nanostructure Growth Dynamics

    Full text link
    Thin film coatings have been essential in development of several micro and nano-scale devices. To realize thin film coatings various deposition techniques are employed, each yielding surface morphologies with different characteristics of interest. Therefore, understanding and control of the surface growth is of great interest. In this paper, we devise a novel network-based modeling of the growth dynamics of such thin films and nano-structures. We specifically map dynamic steps taking place during the growth to components (e.g., nodes, links) of a corresponding network. We present initial results showing that this network-based modeling approach to the growth dynamics can simplify our understanding of the fundamental physical dynamics such as shadowing and re-emission effects

    Focused Azimuthally Polarized Vector Beam and Spatial Magnetic Resolution below the Diffraction Limit

    Full text link
    An azimuthally electric-polarized vector beam (APB), with a polarization vortex, has a salient feature that it contains a magnetic-dominant region within which electric field ideally has a null while longitudinal magnetic field is maximum. Fresnel diffraction theory and plane-wave spectral (PWS) calculations are applied to quantify field features of such a beam upon focusing through a lens. The diffraction-limited full width at half maximum (FWHM) of the beam's longitudinal magnetic field intensity profile and complementary FWHM (CFWHM) of the beam's annular-shaped total electric field intensity profile are examined at the lens's focal plane as a function of the lens's paraxial focal distance. Then, we place a subwavelength dense dielectric Mie scatterer in the minimum-waist plane of a self-standing converging APB and demonstrate for the first time that a very high resolution magnetic field at optical frequency is achieved with total magnetic field FWHM of 0.23{\lambda} (i.e., magnetic field spot area of 0.04{\lambda}^2) within a magnetic-dominant region. The theory shown here is valuable for development of optical microscopy and spectroscopy systems based on magnetic dipolar transitions which are in general much weaker than their electric counterparts

    Electronic shells of Dirac fermions in graphene quantum rings in a magnetic field

    Full text link
    We present results of tight binding calculations demonstrating existence of degenerate electronic shells of Dirac Fermions in narrow, charge neutral graphene quantum rings. We predict removal of degeneracy with finite magnetic field. We show, using a combination of tight binding and configuration interaction methods, that by filling a graphene ring with additional electrons this carbon based structure with half-filled shell acquires a finite magnetic moment.Comment: 10 pages, 4 figure

    Theory of a Directive Optical Leaky Wave Antenna Integrated into a Resonator and Enhancement of Radiation Control

    Full text link
    We provide for the first time the detailed study of the radiation performance of an optical leaky wave antenna (OLWA) integrated into a Fabry-P\'erot resonator. We show that the radiation pattern can be expressed as the one generated by the interference of two leaky waves counter-propagating in the resonator leading to a design procedure for achieving optimized broadside radiation, i.e., normal to the waveguide axis. We thus report a realizable implementation of the OLWA made of semiconductor and dielectric regions. The theoretical modeling is supported by full-wave simulation results, which are found to be in good agreement. We aim to control the radiation intensity in the broadside direction via excess carrier generation in the semiconductor regions. We show that the presence of the resonator can provide an effective way of enhancing the radiation level modulation, which reaches values as high as 13.5 dB, paving the way for novel promising control capabilities that might allow the generation of very fast optical switches, as an example.Comment: 10 pages, 14 figure

    Graphene-Dielectric Composite Metamaterials: Evolution from Elliptic to Hyperbolic Wavevector Dispersion and The Transverse Epsilon-Near-Zero Condition

    Full text link
    We investigated a multilayer graphene-dielectric composite material, comprising graphene sheets separated by subwavelength-thick dielectric spacer, and found it to exhibit hyperbolic isofrequency wavevector dispersion at far- and mid-infrared frequencies allowing propagation of waves that would be otherwise evanescent in a dielectric. Electrostatic biasing was considered for tunable and controllable transition from hyperbolic to elliptic dispersion. We explored the validity and limitation of the effective medium approximation (EMA) for modeling wave propagation and cutoff of the propagating spatial spectrum due to the Brillouin zone edge. We found that EMA is capable of predicting the transition of the isofrequency dispersion diagram under certain conditions. The graphene-based composite material allows propagation of backward waves under the hyperbolic dispersion regime and of forward waves under the elliptic regime. Transition from hyperbolic to elliptic dispersion regimes is governed by the transverse epsilon-near-zero (TENZ) condition, which implies a flatter and wider propagating spectrum with higher attenuation, when compared to the hyperbolic regime. We also investigate the tunable transparency of the multilayer at that condition in contrast to other materials exhibiting ENZ phenomena.Comment: to be published in Journal of Nanophotonic

    Population structure of killifish, Aphanius anatoliae (Cyprinodontidae) endemic to Anatolia in Lake Eğirdir-Isparta (Turkey)

    Get PDF
    The population structure of Aphanius anatoliae in Lake Eğirdir-Isparta-Turkey was studied, using 522 fish monthly in 2008. This study were observed in the number of individuals of each sex, age, weight and size compositions. In addition, the total length-weight relationship was calculated as well as the Von Bertalanffy growth equation. A study of the food uptake throughout the year has been carried by examination of the content of the digestive track. Males made up 51.92%, and females 48.08% of the population. The length-weight relationship and Von Bertalanffy growth equation were estimated as W= 0.0232 e ^0.098L, r=0.8262, Lt = 54.51(1 – e ^–0.279(t+1.345)), respectively. Bacillariophyta, Gammarus pulex and aquatic insecta are the major food items for Aphanius anatoliae
    corecore