570 research outputs found

    Non-Binary Gender Identity Development: A Qualitative Study

    Get PDF
    Gender identity development models in psychology for transgender individuals have typically combined the experiences of binary transgender and non-binary transgender people into the same group. However, differences may exist between the two communities. Therefore, the present study sought to explore the lived experiences of non-binary adults and their gender identity development process. Through the lens of grounded theory (Charmaz, 2014), semi-structured, qualitative interviews were conducted with 10 non-binary participants to collect rich data on their gender identity development process. Transcriptions were coded and reviewed to develop themes and categories. The themes included: Connection and relationships, intersectionality and culture, gender in childhood and adolescence, gender in emerging adulthood, and gender actualization and liberation. A dynamic gender identity development model was created to illustrate the themes and categories developed from the data provided by participants. The themes from the non-binary participants share some commonalities with binary transgender individuals; however, some findings were unique to the non-binary community, indicating binary and non-binary transgender individuals may not be regarded as the same community

    Quantifying Pollutant Removal Rates of Bioretention Basins as a Stormwater Best Management Practice

    Get PDF
    Water pollution is an ongoing problem that can be attributed to human activities. As world population increases and countries become more developed, this problem intensifies. Fortunately, the causes and solutions of water pollution are documented and have been implemented with various levels of success. These solutions, or Best Management Practices (BMPs), vary in type and function and remove pollutants from runoff prior to it reaching rivers, lakes, and other bodies of water. This study investigates bioretention basins, a specific group of BMPs, and presents analysis and prediction of their performance, of which our knowledge is incomplete in the existing literature. To fill this knowledge gap, this study examined mean pollutant removal rates for 25 separate pollutants and developed a series of regression models and nomographs to predict pollutant removal rates given an influent pollutant concentration, rainfall depth, and bioretention basin geometry. Results indicate that a wide variety of factors influence the pollutant removal rates that can be achieved using bioretention basins. This study was performed to gain a better understanding of the processes that define pollutant removal and to develop predictive models that could be used to estimate potential pollutant removal rates provided by bioretention basins. Given the ongoing water pollution problem, this study aims to evaluate the effectiveness of bioretention basins as a possible solution. The predictive models are likely to be the first of their kind and will contribute to the improvement of the design and engineering of bioretention basins

    The inter-outburst behavior of cataclysmic variables

    Get PDF
    Existing International Ultraviolet Explorer (IUE) and American Association of Variable Star Observers (AAVSO) archive data was used to accomplish a large scale study of what happens to the ultraviolet flux of accretion disk systems during the quiescent intervals between outbursts and how it relates to the preceding outburst characteristics of amplitude and width. The data sample involved multiple IUE observations for 16 dwarf novae and 8 novae along with existing optical coverage. Results indicate that most systems show correlated ultraviolet (UV) flux behavior with interoutburst phase, with 60 percent of the dwarf novae and 50 percent of the novae having decreasing flux trends while 33 percent of the dwarf novae and 38 percent of the novae show rising UV flux during the quiescent interval. All of the dwarf novae with decreasing UV fluxes at 1475A have orbital periods longer than 4.4 hours, while all (except BV Cen) with flat or rising fluxes at 1475A have orbital periods less than two hours. There are not widespread correlations of the UV fluxes with the amplitude of the preceding outburst and no correlations with the width of the outburst. From a small sample (7) that have relatively large quiescent V magnitude changes between the IUE observations, most show a strong correlation between the UV and optical continuum. Interpretation of the results is complicated by not being able to determine how much the white dwarf contributes to the ultraviolet flux. However, it is now evident that noticeable changes are occurring in the hot zones in accreting systems long after the outburst, and not only for systems that are dominated by the white dwarf. Whether these differences are due to different outburst mechanisms or to changes on white dwarfs which provide varying contributions to the UV flux remains to be determined
    corecore