1,303 research outputs found

    Electronic Excitations and Correlation Effects in Metals

    Full text link
    Theoretical descriptions of the spectrum of electronic excitations in real metals have not yet reached a fully predictive, "first-principles" stage. In this paper we begin by presenting brief highlights of recent progress made in the evaluation of dynamical electronic response in metals. A comparison between calculated and measured spectra - we use the loss spectra of Al and Cs as test cases - leads us to the conclusion that, even in "weakly-correlated" metals, correlation effects beyond mean-field theory play an important role. Furthermore, the effects of the underlying band structure turn out to be significant. Calculations which incorporate the effects of both dynamical correlations and band structure from first principles are not yet available. As a first step towards such goal, we outline a numerical algorithm for the self-consistent solution of the Dyson equation for the one-particle Green's function. The self-energy is evaluated within the shielded-interaction approximation of Baym and Kadanoff. Our method, which is fully conserving, is a finite-temperature scheme which determines the Green's function and the self-energy at the Matsubara frequencies on the imaginary axis. The analytical continuation to real frequencies is performed via Pade approximants. We present results for the homogeneous electron gas which exemplify the importance of many-body self-consistency.Comment: 32 pages, 6 figures; "Fifty Years of the Correlation Problem", invited paper, to be published in Mol.Phy

    Evolution of Cooperative Networks and the Emergence of Leadership

    Get PDF
    A generic property of biological, social and economical networks is their ability to evolve in time, creating or supressing links. We model this situation with an adaptive network of agents playing a Prisoner's Dilemma game. Each agent plays with its local neighbors, collects an aggregate payoff and imitates the strategy of its best neighbor. Furthermore we allow the agents adapt their local neighborhood according to their satisfaction level and the strategy played. Therefore each agent will have diverse environments that induces an interesting dynamics in the cooperation fraction of the whole network. In the absence of noise, a steady state is always reached, where the strategies and the neighborhoods remain stationary, and where for a wide range of parameter values, an almost full cooperative outcome is obtained. The topology of the network in these states reveals that cooperators with a large number of connections emerges. These "leaders" are shown to be very important in understanding the global stability of the final steady state. If the "leaders" are perturbated, then global cascades arise and the system oscillates between the nearly full defection network and the fully cooperative outcome, before settling again in a nearly fully cooperative outcome.Cooperation -- Evolutionary Game Theory -- Stochastic Networks -- Prisoner Dilemma

    Noise in Coevolving Networks

    Get PDF
    Coupling dynamics of the states of the nodes of a network to the dynamics of the network topology leads to generic absorbing and fragmentation transitions. The coevolving voter model is a typical system that exhibits such transitions at some critical rewiring. We study the robustness of these transitions under two distinct ways of introducing noise. Noise affecting all the nodes destroys the absorbing-fragmentation transition, giving rise in finite-size systems to two regimes: bimodal magnetisation and dynamic fragmentation. Noise Targeting a fraction of nodes preserves the transitions but introduces shattered fragmentation with its characteristic fraction of isolated nodes and one or two giant components. Both the lack of absorbing state for homogenous noise and the shift in the absorbing transition to higher rewiring for targeted noise are supported by analytical approximations.Comment: 20 page

    Data-driven modeling of systemic delay propagation under severe meteorological conditions

    Get PDF
    The upsetting consequences of weather conditions are well known to any person involved in air transportation. Still the quantification of how these disturbances affect delay propagation and the effectiveness of managers and pilots interventions to prevent possible large-scale system failures needs further attention. In this work, we employ an agent-based data-driven model developed using real flight performance registers for the entire US airport network and focus on the events occurring on October 27 2010 in the United States. A major storm complex that was later called the 2010 Superstorm took place that day. Our model correctly reproduces the evolution of the delay-spreading dynamics. By considering different intervention measures, we can even improve the model predictions getting closer to the real delay data. Our model can thus be of help to managers as a tool to assess different intervention measures in order to diminish the impact of disruptive conditions in the air transport system.Comment: 9 pages, 5 figures. Tenth USA/Europe Air Traffic Management Research and Development Seminar (ATM2013

    Absorbing and Shattered Fragmentation Transitions in Multilayer Coevolution

    Get PDF
    We introduce a coevolution voter model in a multilayer, by coupling a fraction of nodes across two network layers and allowing each layer to evolve according to its own topological temporal scale. When these time scales are the same the dynamics preserve the absorbing-fragmentation transition observed in a monolayer network at a critical value of the temporal scale that depends on interlayer connectivity. The time evolution equations obtained by pair approximation can be mapped to a coevolution voter model in a single layer with an effective average degree. When the two layers have different topological time scales we find an anomalous transition, named shattered fragmentation, in which the network in one layer splits into two large components in opposite states and a multiplicity of isolated nodes. We identify the growth of the number of components as a signature of this anomalous transition. We also find a critical level of interlayer coupling needed to prevent the fragmentation in a layer connected to a layer that does not fragment.Comment: 7 pages, 6 figures, last figure caption includes link to animation

    Las rocas más antiguas de la península Ibérica

    Get PDF

    The Band-Gap Problem in Semiconductors Revisited: Effects of Core States and Many-Body Self-Consistency

    Full text link
    A novel picture of the quasiparticle (QP) gap in prototype semiconductors Si and Ge emerges from an analysis based on all-electron, self-consistent, GW calculations. The deep-core electrons are shown to play a key role via the exchange diagram --if this effect is neglected, Si becomes a semimetal. Contrary to current lore, the Ge 3d semicore states (e.g., their polarization) have no impact on the GW gap. Self-consistency improves the calculated gaps --a first clear-cut success story for the Baym-Kadanoff method in the study of real-materials spectroscopy; it also has a significant impact on the QP lifetimes. Our results embody a new paradigm for ab initio QP theory
    corecore