596 research outputs found

    Fairness in examination timetabling: student preferences and extended formulations

    Get PDF
    Variations of the examination timetabling problem have been investigated by the research community for more than two decades. The common characteristic between all problems is the fact that the definitions and data sets used all originate from actual educational institutions, particularly universities, including specific examination criteria and the students involved. Although much has been achieved and published on the state-of-the-art problem modelling and optimisation, a lack of attention has been focussed on the students involved in the process. This work presents and utilises the results of an extensive survey seeking student preferences with regard to their individual examination timetables, with the aim of producing solutions which satisfy these preferences while still also satisfying all existing benchmark considerations. The study reveals one of the main concerns relates to fairness within the students cohort; i.e. a student considers fairness with respect to the examination timetables of their immediate peers, as highly important. Considerations such as providing an equitable distribution of preparation time between all student cohort examinations, not just a majority, are used to form a measure of fairness. In order to satisfy this requirement, we propose an extension to the state-of-the-art examination timetabling problem models widely used in the scientific literature. Fairness is introduced as a new objective in addition to the standard objectives, creating a multi-objective problem. Several real-world examination data models are extended and the benchmarks for each are used in experimentation to determine the effectiveness of a multi-stage multi-objective approach based on weighted Tchebyceff scalarisation in improving fairness along with the other objectives. The results show that the proposed model and methods allow for the production of high quality timetable solutions while also providing a trade-off between the standard soft constraints and a desired fairness for each student

    Solving Examination Timetabling Problem using Partial Exam Assignment with Great Deluge Algorithm

    Get PDF
    Constructing a quality solution for the examination timetable problem is a difficult task. This paper presents a partial exam assignment approach with great deluge algorithm as the improvement mechanism in order to generate good quality timetable. In this approach, exams are ordered based on graph heuristics and only selected exams (partial exams) are scheduled first and then improved using great deluge algorithm. The entire process continues until all of the exams have been scheduled. We implement the proposed technique on the Toronto benchmark datasets. Experimental results indicate that in all problem instances, this proposed method outperforms traditional great deluge algorithm and when comparing with the state-of-the-art approaches, our approach produces competitive solution for all instances, with some cases outperform other reported result

    Examination timetabling automation using hybrid meta-heuristics

    Get PDF
    Trabalho de projeto realizado para obtenção do grau de Mestre em Engenharia Informática e de ComputadoresNos últimos anos, o tema da geração automática de horários tem sido alvo de muito estudo. Em muitas instituições, a elaboração de horários ainda é feita manualmente, constituindo-se uma tarefa demorada e penosa para instâncias de grande dimensão. Outro problema recorrente na abordagem manual é a existência de falhas dada a dificuldade do processo de verificação, e também a qualidade final do horário produzido. Se este fosse criado por computador, o horário seria válido e seriam de esperar horários com qualidade superior dada a capacidade do computador para pesquisar o espaço de soluções. A elaboração de horários não é uma tarefa fácil, mesmo para uma máquina. Por exemplo, horários escolares necessitam de seguir certas regras para que seja possível a criação de um horário válido. Mas como o espaço de estados (soluções) válidas é tão vasto, é impraticável criar um algoritmo que faça a enumeração completa de soluções a fim de escolher a melhor solução possível. Por outro lado, a utilização de algoritmos que realizam a enumeração implícita de soluções (por exemplo, branch and bound), não é viável para problemas de grande dimensão. A utilização de heurísticas que percorrem de uma forma guiada o espaço de estados, conseguindo assim uma solução razoável em tempo útil, constituem uma abordagem adequada para este tipo de problemas. Um dos objetivos do projeto consiste na criação duma abordagem que siga as regras do International Timetabling Competition (ITC) 2007 incidindo na criação de horários de exames em universidades (Examination timetabling track). Este projeto utiliza uma abordagem de heurísticas híbridas. Isto significa que utiliza múltiplas heurísticas para obter a melhor solução possível. Utiliza uma variação da heurística de Graph Coloring para obter uma solução válida e as meta-heurísticas Simulated Annealing e Hill Climbing para melhorar a solução obtida. Os resultados finais são satisfatórios, pois em algumas instâncias os resultados são melhores do que alguns dos cinco finalistas do concurso ITC 2007.Abstract: In the last few years the automatic creation of timetables is being a well-studied subject. In many institutions, the elaboration of timetables is still manual, thus being a time-consuming and difficulty task for large instances. Another current problem in the manual approach is the existence of failures given the difficulty in the process verification, and so the quality of the produced timetable. If this timetable had been created by a computer, the timetable would be valid and timetables with better quality should be obtained, given the computer’s capacity to search the solution space. It is not easy to elaborate timetables, even for a machine. For example, scholar/university timetables need to follow certain type of constraints or rules for them to be considered valid. But since the solution space is so vast, it is highly unlikely to create an algorithm that completely enumerates the solutions in order to choose the best solution possible, considering the problem structure. The use of algorithms that perform implicit enumeration solutions (for example, an branch bound), is not feasible for large problems. Hence the use of heuristics which navigate through the solution space in a guided way, obtaining then a reasonable solution in acceptable time. One main objective of this project consists in creating an approach that follows the International Timetabling Competition (ITC) 2007 rules, focusing on creating examination timetables. This project will use a hybrid approach. This means it will use an approach that includes multiple heuristics in order to find the best possible solution. This approach uses a variant of the Graph Coloring heuristic to find an initial valid solution, and the metaheuristics Simulated Annealing and Hill Climbing to improve that solution. The final results are satisfactory, as in some instances the obtained results beat the results of some of the five finalists from ITC 2007

    Hybrid genetic algorithm for university examination timetabling problem

    Get PDF
    This paper considers a Hybrid Genetic Algorithm (HGA) for University Examination Timetabling Problem (UETP). UETP is defined as the assignment of a given number of exams and their candidates to a number of available timeslots while satisfying a given set of constraints. Solutions for uncapacitated UETP are presented where five domain-specific knowledge in the form of low-level heuristics are used to guide the construction of the timetable in the initial population. The main components of the genetic operators in a GA will be tested and the best combination of the genetic operators will be adopted to construct a Pure Genetic Algorithm (PGA). The PGA will then hybridised with three new local optimisation techniques, which will make up the HGA; to improve the solutions found. These new local optimisation techniques will arrange the timeslots and exams using new explicit equations, if and only if, the modification will reduce the penalty cost function. The performance of the proposed HGA is compared with other metaheuristics from literature using the Carter’s benchmark dataset which comprises of real-world timetabling problem from various universities. The computational results show that the proposed HGA outperformed some of the metaheuristic approaches and is comparable to most of the well-known metaheuristic approaches

    Performance Analyses of Graph Heuristics and Selected Trajectory Metaheuristics on Examination Timetable Problem

    Get PDF
    Examination timetabling problem is hard to solve due to its NP-hard nature, with a large number of constraints having to be accommodated. To deal with the problem effectually, frequently heuristics are used for constructing feasible examination timetable while meta-heuristics are applied for improving the solution quality. This paper presents the performances of graph heuristics and major trajectory metaheuristics or S-metaheuristics for addressing both capacitated and un-capacitated examination timetabling problem. For constructing the feasible solution, six graph heuristics are used. They are largest degree (LD), largest weighted degree (LWD), largest enrolment degree (LE), and three hybrid heuristic with saturation degree (SD) such as SD-LD, SD-LE, and SD-LWD. Five trajectory algorithms comprising of tabu search (TS), simulated annealing (SA), late acceptance hill climbing (LAHC), great deluge algorithm (GDA), and variable neighborhood search (VNS) are employed for improving the solution quality. Experiments have been tested on several instances of un-capacitated and capacitated benchmark datasets, which are Toronto and ITC2007 dataset respectively. Experimental results indicate that, in terms of construction of solution of datasets, hybridizing of SD produces the best initial solutions. The study also reveals that, during improvement, GDA, SA, and LAHC can produce better quality solutions compared to TS and VNS for solving both benchmark examination timetabling datasets

    Search methodologies for examination timetabling

    Get PDF
    Working with examination timetabling is an extremely challenging task due to the difficulty of finding good quality solutions. Most of the studies in this area rely on improvement techniques to enhance the solution quality after generating an initial solution. Nevertheless, the initial solution generation itself can provide good solution quality even though the ordering strategies often using graph colouring heuristics, are typically quite simple. Indeed, there are examples where some of the produced solutions are better than the ones produced in the literature with an improvement phase. This research concentrates on constructive approaches which are based on squeaky wheel optimisation i.e. the focus is upon finding difficult examinations in their assignment and changing their position in a heuristic ordering. In the first phase, the work is focused on the squeaky wheel optimisation approach where the ordering is permutated in a block of examinations in order to find the best ordering. Heuristics are alternated during the search as each heuristic produces a different value of a heuristic modifier. This strategy could improve the solution quality when a stochastic process is incorporated. Motivated by this first phase, a squeaky wheel optimisation concept is then combined with graph colouring heuristics in a linear form with weights aggregation. The aim is to generalise the constructive approach using information from given heuristics for finding difficult examinations and it works well across tested problems. Each parameter is invoked with a normalisation strategy in order to generalise the specific problem data. In the next phase, the information obtained from the process of building an infeasible timetable is used. The examinations that caused infeasibility are given attention because, logically, they are hard to place in the timetable and so they are treated first. In the adaptive decomposition strategy, the aim is to automatically divide examinations into difficult and easy sets so as to give attention to difficult examinations. Within the easy set, a subset called the boundary set is used to accommodate shuffling strategies to change the given ordering of examinations. Consequently, the graph colouring heuristics are employed on those constructive approaches and it is shown that dynamic ordering is an effective way to permute the ordering. The next research chapter concentrates on the improvement approach where variable neighbourhood search with great deluge algorithm is investigated using various neighbourhood orderings and initialisation strategies. The approach incorporated with a repair mechanism in order to amend some of infeasible assignment and at the same time aiming to improve the solution quality

    Operational Research in Education

    Get PDF
    Operational Research (OR) techniques have been applied, from the early stages of the discipline, to a wide variety of issues in education. At the government level, these include questions of what resources should be allocated to education as a whole and how these should be divided amongst the individual sectors of education and the institutions within the sectors. Another pertinent issue concerns the efficient operation of institutions, how to measure it, and whether resource allocation can be used to incentivise efficiency savings. Local governments, as well as being concerned with issues of resource allocation, may also need to make decisions regarding, for example, the creation and location of new institutions or closure of existing ones, as well as the day-to-day logistics of getting pupils to schools. Issues of concern for managers within schools and colleges include allocating the budgets, scheduling lessons and the assignment of students to courses. This survey provides an overview of the diverse problems faced by government, managers and consumers of education, and the OR techniques which have typically been applied in an effort to improve operations and provide solutions
    corecore