4,696 research outputs found

    Time Evolution after Double Trace Deformation

    Full text link
    In this paper, we consider double trace deformation to single CFT2{}_2, and study time evolution after the deformation. The double trace deformation we consider is nonlocal: composed of two local operators placed at separate points. We study two types of local operators: one is usual local operator in CFT, and the other is HKLL bulk local operator, which is still operator in CFT but has properties as bulk local operator. We compute null energy and averaged null energy in the bulk in both types of deformations. We confirmed that, with the suitable choice of couplings, averaged null energies are negative. This implies causal structure is modified in the bulk, from classical background. We then calculate time evolution of entanglement entropy and entanglement Renyi entropy after double trace deformation. We find both quantities are found to show peculiar shockwave-like time evolution.Comment: 16 pages, 12 figures, references added, typos correcte

    Butterflies from Information Metric

    Get PDF
    We study time evolution of distance between thermal states excited by local operators, with different external couplings. We find that growth of the distance implies growth of commutators of operators, signifying the local excitations are scrambled. We confirm this growth of distance by holographic computation, by evaluating volume of codimension 1 extremal volume surface. We find that the distance increases exponentially as e2πtβe^{\frac{2\pi t}{\beta}}. Our result implies that, in chaotic system, trajectories of excited thermal states exhibit high sensitivity to perturbation to the Hamiltonian, and the distance between them will be significant at the scrambling time. We also confirm the decay of two point function of holographic Wilson loops on thermofield double state.Comment: 10 pages, 3 figures, reference added, minor modification

    Surface/State Correspondence as a Generalized Holography

    Get PDF
    We propose a new duality relation between codimension two space-like surfaces in gravitational theories and quantum states in dual Hilbert spaces. This surface/state correspondence largely generalizes the idea of holography such that we do not need to rely on any existence of boundaries in gravitational spacetimes. The present idea is motivated by the recent interpretation of AdS/CFT in terms of the tensor networks so called MERA. Moreover, we study this correspondence from the viewpoint of entanglement entropy and information metric. The Cramer-Rao bound in quantum estimation theory implies that the quantum fluctuations of radial coordinate of the AdS is highly suppressed in the large N limit.Comment: 28 pages, 4 figures, Late
    corecore