229 research outputs found

    Coarse-grained microscopic model of glass formers

    Full text link
    We introduce a coarse-grained model for atomic glass formers. Its elements are physically motivated local microscopic dynamical rules parameterized by observables. Results of the model are established and used to interpret the measured behaviors of supercooled fluids approaching glass transitions. The model predicts the presence of a crossover from hierarchical super-Arrhenius dynamics at short length scales to diffusive Arrhenius dynamics at large length scales. This prediction distinguishes our model from other theories of glass formers and can be tested by experiment.Comment: 5 pages, 5 figure

    �ber die Bernoullischen Funktionen

    Get PDF
    n/

    Bailouts in a common market: a strategic approach

    Get PDF
    Governments in the EU grant Rescue and Restructure Subsidies to bail out ailing firms. In an international asymmetric Cournot duopoly we study effects of such subsidies on market structure and welfare. We adopt a common market setting, where consumers from the two countries form one market. We show that the subsidy is positive also when it fails to prevent the exit. The reason is a strategic effect, which forces the more efficient firm to make additional cost-reducing effort. When the exit is prevented, allocative and productive efficiencies are lower and the only gaining player is the rescued firm

    Generic tests of the existence of the gravitational dipole radiation and the variation of the gravitational constant

    Full text link
    We present results from the high precision timing analysis of the pulsar-white dwarf (WD) binary PSR J1012+5307 using 15 years of multi-telescope data. Observations were performed regularly by the European Pulsar Timing Array (EPTA) network, consisting of Effelsberg, Jodrell Bank, Westerbork and Nan\c{c}ay. All the timing parameters have been improved from the previously published values, most by an order of magnitude. In addition, a parallax measurement of π=1.2(3)\pi = 1.2(3) mas is obtained for the first time for PSR J1012+5307, being consistent with the optical estimation from the WD companion. Combining improved 3D velocity information and models for the Galactic potential the complete evolutionary Galactic path of the system is obtained. A new intrinsic eccentricity upper limit of e<8.4×107e<8.4\times 10^{-7} is acquired, one of the smallest calculated for a binary system and a measurement of the variation of the projected semi-major axis also constrains the system's orbital orientation for the first time. It is shown that PSR J1012+5307 is an ideal laboratory for testing alternative theories of gravity. The measurement of the change of the orbital period of the system of P˙b=5(1)×1014\dot{P}_{b} = 5(1)\times 10^{-14} is used to set an upper limit on the dipole gravitational wave emission that is valid for a wide class of alternative theories of gravity. Moreover, it is shown that in combination with other binary pulsars PSR J1012+5307 is an ideal system to provide self-consistent, generic limits, based only on millisecond pulsar data, for the dipole radiation and the variation of the gravitational constant G˙\dot{G}.Comment: accepted for publication in MNRAS, 11 pages, 5 figures, 2 table

    Timing stability of millisecond pulsars and prospects for gravitational-wave detection

    Get PDF
    Analysis of high-precision timing observations of an array of approx. 20 millisecond pulsars (a so-called "timing array") may ultimately result in the detection of a stochastic gravitational-wave background. The feasibility of such a detection and the required duration of this type of experiment are determined by the achievable rms of the timing residuals and the timing stability of the pulsars involved. We present results of the first long-term, high-precision timing campaign on a large sample of millisecond pulsars used in gravitational-wave detection projects. We show that the timing residuals of most pulsars in our sample do not contain significant low-frequency noise that could limit the use of these pulsars for decade-long gravitational-wave detection efforts. For our most precisely timed pulsars, intrinsic instabilities of the pulsars or the observing system are shown to contribute to timing irregularities on a five-year timescale below the 100 ns level. Based on those results, realistic sensitivity curves for planned and ongoing timing array efforts are determined. We conclude that prospects for detection of a gravitational-wave background through pulsar timing array efforts within five years to a decade are good.Comment: 21 pages, 5 figures, submitted to MNRA

    Effectiveness of bailouts in the EU

    Get PDF
    Governments in the EU frequently bail out firms in distress by granting state aid. I use data from 86 cases during the years 1995-2003 to examine two issues: the effectiveness of bailouts in preventing bankruptcy and the determinants of bailout policy. The results are threefold. First, the estimated discrete-time hazard rate increases during the first four years after the subsidy and drops after that, suggesting that some bailouts only delayed exit instead of preventing it. The number of failing bailouts could be reduced if European control was tougher. Second, governments’ bailout decisions favored state-owned firms, even though state-owned firms did not outperform private ones in the survival chances. Third, subsidy choice is an endogenous variable in the analysis of the hazard rate. Treating it as exogenous underestimates its impact on the bankruptcy probability. Several policy implications of the results are discussed in the paper

    Fairness in examination timetabling: student preferences and extended formulations

    Get PDF
    Variations of the examination timetabling problem have been investigated by the research community for more than two decades. The common characteristic between all problems is the fact that the definitions and data sets used all originate from actual educational institutions, particularly universities, including specific examination criteria and the students involved. Although much has been achieved and published on the state-of-the-art problem modelling and optimisation, a lack of attention has been focussed on the students involved in the process. This work presents and utilises the results of an extensive survey seeking student preferences with regard to their individual examination timetables, with the aim of producing solutions which satisfy these preferences while still also satisfying all existing benchmark considerations. The study reveals one of the main concerns relates to fairness within the students cohort; i.e. a student considers fairness with respect to the examination timetables of their immediate peers, as highly important. Considerations such as providing an equitable distribution of preparation time between all student cohort examinations, not just a majority, are used to form a measure of fairness. In order to satisfy this requirement, we propose an extension to the state-of-the-art examination timetabling problem models widely used in the scientific literature. Fairness is introduced as a new objective in addition to the standard objectives, creating a multi-objective problem. Several real-world examination data models are extended and the benchmarks for each are used in experimentation to determine the effectiveness of a multi-stage multi-objective approach based on weighted Tchebyceff scalarisation in improving fairness along with the other objectives. The results show that the proposed model and methods allow for the production of high quality timetable solutions while also providing a trade-off between the standard soft constraints and a desired fairness for each student
    corecore