Grammar-Based Genetic Programming for Timetabling

Mohamed Bader El Den and Riccardo Poli

Abstract— We present a grammar-based genetic program-
ming framework for the solving the timetabling problem via
the evolution of constructive heuristics. The grammar used for
producing new generations is based on graph colouring heuris-
tics that have previously proved to be effective in constructing
timetables as well as different slot allocation heuristics. The
framework is tested on a widely used benchmarks in the field
of exam time-tabling and compared with highly-tuned state-of-
the-art approaches. Results shows that the framework is very
competitive with other constructive techniques.

I. INTRODUCTION

Heuristics are a great asset for practical problem solving.
However, the performance of heuristics may vary signifi-
cantly from problem instance to problem instance. Further-
more, there is no easy way to ascertain which heuristic is
going to be the most efficient in solving a given set of
problems, or a certain problem instance. For some problems
a heuristic method may work well for most instances, but
occasionally performance is poor and other heuristics should
be used. This degree of uncertainty and unreliability in the
use of heuristics is really the main motivation behind Hyper-
Heuristics (HHs). HHs could simply be defined as “heuristics
to choose heuristics” [1]. More specifically, a HH manages
the choice of which lower-level heuristic method should be
applied at any given time, depending upon the characteristics
of the heuristics and the region of the solution space currently
under exploration.

There are different classes of HHs. In one class of HHs,
the system is provided with a list of preexisting heuristics for
solving a certain problem. Then the HH tries to discover what
is the best sequence of application for these heuristics for
the purpose of finding a solution. Different techniques have
been used to build HH systems of this class, including: tabu
search [2], case-based reasoning [3], genetic algorithms [4],
ant-colony systems, and even algorithms inspired to marriage
in honey-bees [5].

Another form of HH is one where the system produces
(meta-)heuristics by specialising them from a generic tem-
plate. The specialisation can take the form of one or more
evolved components, which can modify the behaviour of
the meta-heuristic or heuristic. This approach has given, for
example, good results in [6] where the problem of evolving
offline bin-packing heuristics was considered. There Genetic
Programming (GP) (more on it below) was used to evolve

Mohamed Bahy Bader-El-Den with the Department of Computer Science,
Loughborough University, Loughborough, UK, and the Department of Com-
puter Science and Electronic Engineering, University of Essex, Wivenhoe
Park, Colchester, UK (email: mbbade @essex.ac.uk).

Riccardo Poli are with the Department of Computer Science and Elec-
tronic Engineering, University of Essex, Wivenhoe Park, Colchester, UK
(email: rpoli@essex.ac.uk).

strategies to guide a fixed solver. This approach was also
taken in [7] where a technique called Inc* was proposed.
This solver was applied to the satisfiability testing problem
(known as SAT) with good success. The target in SAT is to
determine whether it is possible to set the variables of a given
Boolean expression in such a way to make the expression
true. To further improve chances of success, a key element of
Inc*, its strategy for adding and removing SAT clauses, was
evolved using GP. A third approach used to build HH systems
is to create (e.g., evolve) new heuristics by making use of
the components of known heuristics. This is the approach
adopted in this paper.

In the paper we present a grammar-based Genetic
Programming (GP) framework for evolving constructive
heuristics for timetabling, focusing in particular on exam
timetabling, an important problem in higher education. The
system is based on a grammar that is based on a collection of
graph colouring heuristics that have previously been shown
to be effective in constructing timetables. Also, the grammar
contains slot allocation heuristics as we will describe in
details below. The main advantage in our GP HH method
over other HH methods is that GP allows us to make use
of conditional branching, looping and other components. So,
not only it can find different combination of heuristics that
performs well on a certain problem, it can also discover new
kinds of heuristics. One of the targets in this study is to
compare GP as methods for building HH frameworks against
other metaheuristics techniques. Exam timetabling works
well as a reference problem because there are a number HH
frameworks developed in the last few years to solve it.

The paper is organised as follows. In Section II we
introduce the exam timetabling problem, then, in Section III,
we review some HH methods and some of the best-known
techniques for solving the problem. In Section IV, we
introduce our GP-HH for evolving constructive timetable
heuristics. A description of our GP setup is given in Sec-
tion V, while results obtained, comparisons, and analysis of
the framework are provided in Section VI. Finally, we draw
some conclusions in Section VII.

II. THE EXAM TIMETABLING PROBLEM

The exam timetabling problem is a common problem in
most educational institutions. Although the problem’s details
tend to vary from one institution to another, the core of the
problem is the same. There is a set of exams (tasks), which
have to be assigned to a predefined set of slots and rooms
(resources).

In our research we will be using on the following formula-
tion for the exam timetabling problem. The problem consists
of the a set of n exams F = {eq,...e,}, a set of m students

S = {s1,...5m}, aset of ¢ time slots P = {p1,pa,...pq}
and a registration function R : S — FE, indicating which
student is attending which exam. Seen as a set R = {(s;, ¢;) :
1<i>m,1<j>n}, where student s; is attending exam
e;. A scheduling algorithm assigns each exam to a certain
slot. A solution then has the form O : E — P or, as a set,
O={(eg,p):1<k>n,1<1>q}

The problem is similar to the graph colouring problem
but it includes extra constraints, as shown by Welsh and
Powell [8]. These constraints are categorised into two main
types: (a) Hard Constraints, violating any of these constraints
is not permitted since it would lead to an unfeasible solution,
and (b) Soft Constraints, which are desirable but not crucial
requirements. Violating any of the soft constraints will only
affect the solution’s quality. All hard constraints are equally
important, while soft constraints are not. The importance of
soft constraints vary. Usually a cost function is designed to
calculate the cost of violating each of the soft constraints.
Solutions with lower cost have better quality.

Most constraints relate to the main entities of the problem:
students, exams, rooms and slots. Examples include control-
ling the maximum number of exams or students in each slot,
limiting some exams to rooms with special resources, etc.
There is no clear cut distinction between soft and hard con-
straints: selection between soft and hard constraints depends
on each institution’s requirements. A constraint that is soft
for one institution could be considered hard by another. For
example, the constraint that students cannot attend two exams
in the same slot is hard for most institutions. However, some
other institutions may accept violations of this if only few
students are effected, because a special exam session can be
set up for those students. Fortunately, in most cases, changing
soft constraints combinations and their importance (weight)
does not require changes in the timetabling algorithm itself.
Only changing the cost function which evaluates the quality
of each solution is required.

There are two main types of heuristics in timetabling: con-
structive heuristics and improvement heuristics. Constructive
heuristics are used to construct solutions from scratch, while
improvement heuristics are applied to previously constructed
solutions to attempt to improve their quality. In this paper we
will be focusing on constructive heuristics.

III. RELATED WORK

Over the years, a number of approaches have been inves-
tigated for exam timetabling. These include graph colour-
ing techniques, constraint programming, and different meta-
heuristic approaches, e.g., genetic algorithms, simulated an-
nealing, tabu search, and other HHs. Below we will describe
some of the HHs that have been developed for time tabling.

Fuzzy logic HHs were used in [9] to estimate the difficulty
of each exam. The algorithm starts by ordering the hardest
exams first. Each exam is given a weight indicating the exam
difficulty. The ordering of exams is done on the basis of
the following three criteria: largest degree, saturation degree
and largest enrolment. In case of a deadlock, rescheduling is
performed till all exams are scheduled.

A tabu search HH for timetabling was used in [10], [11],
[12]. The main idea behind the Tabu Search technique is to
avoid repeating the evaluation of recently visited solutions.
This is done by having a memory structure that stores the
k most recently evaluated solutions. In [12] the authors
employed Tabu Search as a high-level metaheuristic to search
through a space of heuristics for university course timetabling
and nurse rostering problems. The heuristics used in the
study were improving heuristics that work on previously
constructed solutions. In [10] the low-level heuristics were
constructive heuristics (graph colouring heuristics). A Tabu
Search approach was employed to search for permutations of
graph heuristics which are used for constructing timetables
in exam and course timetabling problems. This underpins a
multi-stage HH where the Tabu Search employs permutations
upon a different number of graph heuristics in two stages.
The representation of the solutions in these approaches (a
string of heuristics) is similar to the representation used
in [13] where genetic algorithms were used to find combina-
tions of heuristics that perform well on certain problems.
Each individual was represented as a set of strings of
the same length as the number of exams in the problem
instance. Each entry in the first string represented a code
indicating which exam selection heuristic to use. The main
difference between the two approaches is how they move
in the search space: in the Tabu-based methods some local
search heuristics were used beside random moves, while in
the GA algorithm crossover and mutation were used.

Case Based Reasoning was used in [3] for constructing
timetabling solutions. Heuristics that worked well in previous
similar situations were memorised in a case base and were
retrieved for solving the problem at hand. Knowledge dis-
covery techniques were employed in two distinct scenarios.
In the first, they were used to model the problem and
for solving situations along with specific heuristics for the
targeted problems. In the second, they were used to refine
the case base and discard cases which proved to be useless.

IV. GP-HH FOR TIME TABLING

Genetic Programming (GP) [14], [15], [16] is a program
induction algorithm which is inspired by biological evolution.
The target of a GP system is to find computer programs
that perform a user-defined task. It is a specialisation of
genetic algorithms where each individual is a computer
program. GP optimises a population of computer programs
based on a fitness function that measures each program’s
performance on a given task. GP uses genetic operators
(e.g., crossover, mutation and reproduction) to transform the
current populations of programs into new, hopefully better,
populations. In section we introduce our grammar-based GP
HH framework for evolving exam timetabling constructive
heuristics.

The system makes use of a grammar. We developed a
grammar that is able to draw different kinds of timetabling
heuristics together. The grammar contains exam selection
components, slot selection components, conditional branch-
ing and other components as we will describe later. GP uses

the grammar while initialising the population, as well as
during crossover and mutation.

The process of constructing the grammar starts simply by
selecting a suitable set of heuristics that are known to be
useful in solving a certain problem. Then, instead of directly
feeding these heuristics to the HH system (as in the first
type of HHs discussed in Section I), where possible the
heuristics are first decomposed into their basic components.
Different heuristics may share different basic components in
their structure. However, during the decomposition process,
information on how these components were connected with
one another is lost. To avoid throwing away this important
information, the mutual relations between components are
captured by our grammar. Both the grammar and the heuris-
tics components are given to the GP HH systems.

In [17] this approach was used to evolve heuristics for the
SAT problem which are specialised to solve specific sets of
instances of the problem. We should stress that here we use
GP as an online learning method which evolves heuristics
while solving the problem. The system keeps on evolving
heuristics for each problem instance and evaluating them
until a sufficiently good solution is found or some other
stopping condition is met. This is different from the approach
used in [17] for evolving SAT heuristics, where GP was
used as an offline learning method. More specifically, in [17]
GP was first applied to a training set of instances, then the
best evolved heuristics were used to directly to solve other
instances without further evolution. In [18] a simple Linear
GP have been used in for evolving sequential heuristics for
the travelling salesman problem.

A. Exam selection heuristics

Constructive graph colouring heuristics have been success-
fully used in constructing timetables [19]. These heuristic
have been used by many HHs [9], [10] and other frameworks
for constructing timetables. The exam selection heuristics
used here are those proposed in [19], namely:

o Largest Degree Based Selection (LD)

o Largest Enrolment Based Selection (LE)
o Least Saturation Based Selection (SD)

o Largest Weighted Based Selection (LWD)
« Random Selection (RS)

Two exams are considered to be in conflict with each
other if they cannot be scheduled in the same slot. In this
study we consider two exams conflicting if there are one
or more students registered in both exams. In the largest
degree heuristics, LD, exams with the most conflicts are
selected first. The largest enrolment, LE, heuristic selects
first the exams with the largest numbers of students. The
saturation degree, SD, heuristic selects exams with the least
number of available slots first. This is the only heuristic that
entails updating. That is, assigning an exam to a slot will
make this slot unavailable for all other slots in conflict with
this exam and the count of available slots for them will be
decreased by one. Largest Weighted Degree, LWD, is the
same as the LD heuristic but if there are more than one

<exm> ::= random <eList> |
first <elist>
<eList> = max—-conflict <eList> |

least-slot <eList> |
max—-students <eList> |
all-exams |

Fig. 1: The set of heuristics that is responsible for selecting
an exam in the GP-HH grammar.

exam with the same number of conflicts, the tie is broken in
favour of the exam with more students. Random Selection,
RS, is the simplest heuristic in this group: it selects a random
exam from the list of unscheduled exams. This heuristic
brings some randomness into the scheduling process, which,
in some cases, helps produce better results. On the other
hand, most probably randomness will cause the system not
to produce the same results when running the same group of
heuristics more than once. Authors overcome this problem
by simply running the same heuristics combination for more
than one time to ensure robustness.

Figure 1 shows the implementation of the exam selection
heuristics in the GP-HH. The LD, LE and SD heuris-
tics are represented in the grammar as max-conflict,
max-student and least-slot, respectively. The gram-
mar is designed in such a way that different combinations
of heuristics could be nested together. The LWD heuris-
tic has no direct representation in the grammar as it can
simply be obtained by nesting the max-conflict and
max-student heuristics together as follows:

random
max—-student
max—-conflict
all-exams
where line breaks and spaces were introduced to increase
readability. This statement consists of a nested call of heuris-
tics. The last part of the statement, all—-exams, returns to
max—conflict a list of all exams not scheduled, yet. If
there are more than more than one exam with the highest
number of conflicts, the tie is resolved by max-student
in favour of higher number of students. If there is still a tie,
this is resolved randomly (by random).

The ability of recursively cascading components present
in our grammar gives GP the flexibility to evolve more
sophisticated heuristics such as the LWD exemplified above.

B. Slot selection heuristics

The slot selection heuristics assign one of the available
slots to a previously selected exam. We use the following
heuristics for that:

o Least Cost Based Selection (LC).

o Least Blocking Based Selection (LB).
« Busiest Based Selection (BU).

o Least Busy Based Selection (LU).

o Random Selection (RS).

<slt> ::= random <sList> |

first <sList>
least-cost <sList> |
least-busy <sList> |
most-busy <sList> |
least-blocking <sList> |
all-slots

<sList>

Fig. 2: Part of the GP-HH grammar which is responsible for
selecting exams.

The LC heuristic selects the slot which causes the least
increase in the solution’s cost. The LB heuristic selects the
slot which causes the least decrease in total number of avail-
able slots for all other unscheduled conflicting exams. The
idea behind the BU heuristic is to select the busiest available
slot with other exams to keep as much space as possible for
other exams. This could specifically be effective in breaking
ties between slots that have the same cost. The LU heuristics
is the opposite of BU. It select the least occupied slot with
other exams. The Random heuristic simply selects a random
slot.

The part of the grammar representing these heuristics is
shown in Figure 2. The grammar also allows these heuristics
to be nested as described in the previous section with the
exam selection heuristics.

C. GP-HH Full Grammar

The full GP-HH grammar developed for exam timetabling
is shown in Figure 3. Beside what we have described before,
the grammar contains conditional branching.

There are two types of condition. The first is proba-
bilistic branching, based on some fixed probability. The
second is based on how far the evolved heuristic is in
constructing the timetable. This is because the performance
of heuristics varies throughout the construction of a solution.
Some may be efficient in the early stages, while others are
more effectively at refining timetables. For example, the SD
exam selection heuristic, which selects the exam with the
least number of available slots, may not be efficient in the
beginning of the timetable construction, when most or all of
the slot are still empty and available for almost all exams. In
this stage, a heuristic such the LD exam selection heuristic
may be more effective because it selects exams based on the
number of conflicts with other exams. On the other hand, the
use of SD may be more effective at the late stages where the
slots are blocked with other exams, and there are some exams
with very slots few available. So, it is more reasonable to
schedule these exams first. Using a form of branching which
considers how far the evolved heuristic are in constructing
the timetable allows GP to decide when and how to use these
heuristics. More specifically, vSmall returns true if less
than 25% of the exams are scheduled, small from 25% to
50%, mid 50% to 75% and large when more than 75%
of the exams are scheduled.

assign <exm> <slt>

<exm> ::= random <elList> |

first <eList>

<eList> max—-conflict <elList> |
least-slot <eList> |
max—-students <eList> |
all-exams |

if <cond><elist><elList>
<slt> ::= random <sList> |
first <sList>
<sList> ::= least-cost <sList> |
least-busy <sList> |
most-busy <sList> |
least-blocking <sList> |
all-slots

if <cond><sList><sList>

<size>

<cond> <pro> |

<size> ::= vSmall | small |

mid | large

<prob>

Il
[\
(@]
=~
o

50 |

Fig. 3: The complete GP-HH grammar.

D. Constraints

We adopted the most common hard and soft constraints
in the literature to be able to compare our results with the
largest number of available results in the literature. The
hard constraints we considered in this paper represent the
“conflicts” of scheduling two exams with common students
into the same time slot. The soft constraints are concerned
with spreading out each student’s exams over the timetable
so that students will not have to sit exams that are too close to
each other. The objective is to schedule all of the exams into
the time slots, while minimising the cost on the violations
of the soft constraint per student.

The cost is calculated using the following function which
was first presented in [19]:

1 N—-1 N
clt)=¢g 21 Zl[’wﬂpi - p;l)ai;] (1
i=1 j=it

where NN is the total number of exams in the problem, S
the total number of student, a(i,j) returns the number of
students attending both exams ¢ and j, p; is the time slot
where exam i is scheduled, w(|p; — p;|) returns 25~ IP:=P;l

if [p; — p;j| <5, and 0 otherwise.!

V. GENETIC PROGRAMMING SETUP

The GP system initialises the population by randomly
drawing nodes from the function and terminal sets. This
is done uniformly at random using the GROW method,
except that the selection of the function (head) assign is
forced for the root node and is not allowed elsewhere. After
initialisation, the population is manipulated by the following
operators:

« Tournament selection, with tournament size of 5. Rese-
lection is permitted.

o The reproduction rate is 0.1. Individuals that have not
been affected by any genetic operator are not evaluated
again to reduce the computation cost.

o The crossover rate is 0.8. Offspring are created using a
specialised form of crossover. A random crossover point
is selected in the first parent, then the grammar is used
to select the crossover point from the second parent. It
is randomly selected from all valid crossover points. If
no point is available, the process is repeated again from
the beginning until crossover is successful.

o Mutation is applied with a rate of 0.1. This is done
by selecting a random node from the parent (including
the root of the tree), deleting the sub-tree rooted there,
and then regenerating it randomly as in the initialisation
phase.

o Population size ranges between 500 and 1000 individ-
uals.

o Number of generation ranges between 50 and 100.

e We run each individual 3 times. Best performing indi-
viduals are run for an extra 2 times.

The fitness function we used is the following:

LMoL M
f= [g Z w(|pi _pj|)aij] +C(N-M) (2
i=1 j=itl

where: N is the total number of exams in the problem, M is
the total number of exams that have been successfully sched-
uled, (N — M) > 0 is the number of unscheduled exams,
C' is constant. The objective is to minimise this equation, so
the lower the fitness value the better the individual.

The first part of Equation (2) is almost the same as the cost
function in Equation (1). The second part adds extra penalty
for each exam the heuristic (individual) has not been able
to schedule. Even though solutions with unscheduled exams
are considered to be invalid solutions, this extra penalty for
unscheduled exams is introduced to give GP better ability to
differentiate between individuals.

I'This means that in the most undesirable situation, i.e., when a student has
two exams scheduled one after the other, ¢ will increase the cost function by
a large value, namely 2°~1 = 16. This factor rapidly decreases (following a
negative exponential profile) as the size of the gap between exams increases.

TABLE I: Characteristics of benchmark exam timetabling
problems we used. For each case we show: total number of
exams, number of students registered in at least one exam,
maximum number of slots available, maximum number of
students registered in one exams, maximum number of exams
registered by one student and matrix density.

Name Exams Std. Slots Max. S. Max. E. Matrix

Reg. Reg. Density
car91 682 16925 35 1385 9 0.128
car92 543 18419 32 1566 7 0.138
ear83 190 1125 24 232 10 0.267
hec92 81 2823 18 634 7 0.421
kfu93 461 5349 20 1280 8 0.055
1se91 381 2726 18 382 8 0.063
sta83 139 611 13 237 11 0.144
tre92 261 4360 23 407 6 0.181
uta93 184 21266 35 1314 7 0.126
york83 181 941 21 175 14 0.289

VI. RESULTS

We tested our GP HH method for timetabling by applying
it to one of the most widely used benchmarks in exam
timetabling, against which many state-of-the-art algorithms
have been compared in the past. The benchmark was first
presented in [19]. Its characteristics are shown in Table 1.
The size of the problems varies from 81 to 682 exams and
from 611 to 18419 students. In Table I Max. S. Reg. is the
maximum number of students registered in one exam; Max.
E. Reg. is maximum number of exams registered by one
student; matrix density is the density of the conflict matrix,
which is given by the ratio of the number of conflicting
exams over the total number of all possible pair exam
combinations.

Table II shows the performance of the GP-HH approach
against other state-of-the-art algorithms. The table shows
the cost of each solution for each problem instance in the
benchmark. The cost is calculated using Equation (1). The
table is divided into two parts. The upper part contains
the algorithms that use construction heuristics only with or
without backtracking (the first two methods in this group use
constructions heuristics only; the other use construction with
backtracking). GP-HH outperforms all other algorithms in
this group on almost 50% of the instances. The bottom part
of Table II shows a group of algorithms that use constructive
heuristics followed by improvement heuristics. Clearly, it is
not fair to compare the GP-HH algorithm with this group
because GP-HH uses constructive methods only. However,
we show the comparison here so that readers can see how
close the GP-HH can get to the performance of improvement-
based algorithms. GP HH has been able to outperform some
of the algorithms in this group, and, amazingly, in some cases
it got results that are very close to the best known results,
as in the car92 instance, where the cost achieved by the
GP-HH, 4.15, is second best.

To provide an analysis of the performance the GP-HH,
we collected data from experiments with different numbers
of generations and different numbers of individuals so as to

TABLE II: Results from the GP-HH for time tabling among with the best results reported in literature on benchmark exam

timetabling problems

car91 car92 ear83 hec92 kfu93 l1se9l sta83 tre92 uta93 york83
¢ GP-HH 5.19 415 3724 1196 1483 11.17 158.63 8.69 343 40.05
S Burke et al [10] 541 484 38.19 1272 1576 13.15 141.08 8.85 3.88 40.13
g Asmuni et al [9] 520 452 37.02 11.78 1581 12.09 16042 8.67 3.57 40.66
S Carter et al [19] 7.10 6.20 3640 10.80 14.00 10.50 161.50 9.60 3.50 41.70
© Multi-stage [10] 541 484 3884 13.11 1599 1343 142.19 9.2 4.04 44.51
E Abdullah et al [20] 521 436 3487 1028 1346 1024 150.28 8.13 3.63 36.110
© Burke &Newall 2002 [21] 460 4.00 3705 1154 1390 10.82 168.73 835 3.20 36.80
% Burke,Bykov et al [22] 420 480 3540 1080 13.70 1040 159.10 830 340 36.70
§ Caramia et al [23] 6.60 6.00 2930 09.20 13.80 09.60 15820 9.40 3.50 36.20
g Casey & Thompson [24] 540 440 3480 10.80 14.10 14.70 13470 8.70 XX 37.50
9 Di Gapero & Schaerf [11] 620 520 4570 1240 18.00 1550 160.80 10.0 4.20 41.00
g Merlot et al [25] 5.10 430 35.10 10.60 13.50 10.50 15730 840 3.50 37.40

give a broader view on the performance of the GP-HH. The
number of generations ranged from 50 to 100 generations,
while the number of individuals was 500 and 1000.

Figure 4 shows the total number of individuals throughout
the generations that have been able to produce a complete
and valid timetable that does not violate any hard constraints.

Figure 5 shows the total number of the exam selection
grammar components in each generation, while Figure 6
shows the same but for the slot selection heuristics. The
graphs on the left is drawn using data from all individuals,
while the graphs on the right is drawn from using stats
for the individuals with highest fitness in each generation.
Generally speaking, a feature with an increasing number
of nodes during the generations indicates that individuals
with this feature (nodes) are more likely to survive the
evolution selection process. This also gives an indication
that this feature is probably more effective than other similar
features in solving this particular problem. As shown by the
graphs in the figure, there is no heuristic that is best on
all the benchmark instances and throughout the generations,
but one can understand from these graphs how good these
heuristic are on specific problems. In future work we hope
that by analysing this information and trying to feed it into
the grammar we may further improve performance, e.g.,
by guiding GP in initialising the population rather than
initialising the population randomly.

Figure 7 shows a comparison between the total count of
the Random and First selection primitives of the grammar in
all the individuals throughout the generations. Some of the
graphs compare the First and Random selection heuristics
on the exams selection. Other graphs compare the same
heuristics on the slots selection. Figure 7c compares both
of them. The data in Figures 7f and 7e are taken from the
same experimental run. In the first one the data is taken
from the 1000 individuals in the experiment, while in the

second the data is collected from the best 50 individuals
of each generation. The graphs in Figure 7 show that there
is no single dominating strategy on all problems in the
benchmark. However, we have noticed from the large number
of experiments that we have done on these problem, that the
Random selection heuristic is more frequent throughout the
generations of different experiments suggesting that there are
benefits in using some randomness.

VII. CONCLUSION

In this paper we have introduced a Grammar Based Ge-
netic programming HH framework for evolving constructive
heuristics for timetabling. The framework was tested on
one of the most widely used benchmarks in the field of
exam timetabling and compared with the best state-of-the-art
approaches. Results show that the framework is very compet-
itive with other constructive techniques, and did outperform
other HH frameworks on many occasions. Also we provided
some analyses of the behaviour of GP-HH. As for future
work, we will look into feeding information gained from
this study into the grammar, so as to better guide GP.

VIII. ACKNOWLEDGEMENTS

The authors acknowledge financial support from EPSRC
(grants EP/C523377/1 and EP/C523385/1).

REFERENCES

[1] E. Burke, G. Kendall, J. Newall, E. Hart, P. Ross, and S. Schulenburg,
“Hyper-heuristics: An emerging direction in modern search technol-
ogy,” in Handbook of Metaheuristics, F. Glover and G. Kochenberger,
Eds. Kluwer Academic Publishers, 2003, pp. 457-474.

E. K. Burke, G. Kendall, and E. Soubeiga, “A tabu-search hyperheuris-
tic for timetabling and rostering,” Journal of Heuristics, vol. 9, no. 6,
pp. 451-470, 2003.

E. K. Burke, S. Petrovic, and R. Qu, “Case-based heuristic selection
for timetabling problems,” J. of Scheduling, vol. 9, no. 2, pp. 115-132,
2006.

(31

200 York 83 320
300 -

280

York 83

160

§ § 260
5 S 240
@ 120 3
= = 220 4
I £
° 2 200
80 180
160
40 140 :
0 5 10 15 20 25 30 35 40 45 5(0 10 20 30 40 50 60 70 80 90 100
Generations Generations
(a) (b
280 Les 91 450 Les 91
260 430
410
240 390
Q
@ 20 = 30
= =
= 200 ‘o 350
2 2
< 180 < 30
310
160
290
140 270
120 250 e
0 5 10 15 20 25 30 35 40 45 5(0 5 10 15 20 25 30 35 40 45 50
Generations Generations
(c) (d)
290 Ear 83 650 Tre92
270 600 -
< 507 7 550 -
5 >
2 230 S
a @ 500
T 210 g
Q 2 450
190
170 4 400
150 350

0 5 10 15 20 25 30 35 40 45 5(0 5 10 15 20 25 30 35 40 45 50 55

Generations

(e) ®

Fig. 4: The total number of individuals that have been able
to generate a complete and valid timetable for a problem: (a)
500 individuals and 50 generations, (b) 500 individuals and
100 generations, (c) 500 individuals and 50 generations, (d)
1000 individuals and 50 generations, (e) 500 individuals and
50 generations, (f) 1000 individuals and 60 generations.

Generations

[4] P. Cowling, G. Kendall, and L. Han, “An investigation of a hyper-
heuristic genetic algorithm applied to a trainer scheduling problem,”
in Proceedings of the 2002 Congress on Evolutionary Computation
CEC2002. Washington, DC, USA: IEEE Computer Society, 2002,
pp. 1185-1190.

[5] H. A. Abbass, “Mbo: Marriage in honey bees optimization - a
haplometrosis polygynous swarming approach,” in Proceedings of the
2001 Congress on Evolutionary Computation CEC2001. IEEE Press,
27-30 May 2001, pp. 207-214.

[6] R. Poli, J. Woodward, and E. K. Burke, “A histogram-matching
approach to the evolution of bin-packing strategies,” in 2007 IEEE
Congress on Evolutionary Computation, D. Srinivasan and L. Wang,
Eds., IEEE Computational Intelligence Society. Singapore: IEEE
Press, 25-28 Sep. 2007, pp. 3500-3507.

[71 M. B. Bader-El-Den and R. Poli, “Inc*: An incremental approach for
improving local search heuristics,” in EvoCOP, ser. Lecture Notes in
Computer Science, J. I. van Hemert and C. Cotta, Eds., vol. 4972.
Springer, 2008, pp. 194-205.

[8] D. Welsh and M. Powell, “An upper bound for the chromatic number
of a graph and its application to timetabling problems,” The Computer
Journal, vol. 10, no. 1, pp. 85-87, 1967.

[9] H. Asmuni, E. K. Burke, J. M. Garibaldi, and B. McCollum, “Fuzzy
multiple heuristic orderings for examination timetabling,” in PATAT,
ser. Lecture Notes in Computer Science, E. K. Burke and M. A. Trick,
Eds., vol. 3616. Springer, 2004, pp. 334-353.

10500 - Tre 92 450 Tre 92
9500 400
- @ 350 1 - ESlots
4]] o .
5 B0 8 300 | = EConf .
z z Estd ’
7500 A
k] 5 250
5] - EConf
g 6500 g
£ CESd g
3 5500 ESlots =
.
4500 -
'
3500 : — : 0
0 5 10 15 20 25 30 35 40 45 50 55 60 6! 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70
Generations Generations
(a) All Individuals (b) Best 25 of 1000 individuals
7500 1 York 83 600 7 York 83
7000 | : 0
5
o 6500 o + EConf
(] (] d
B 6000 T 400 | " ESt
c 4
& 5500 z ESlots
° © 300
g S0 -EConf & -
§ 4500 . Estd g 200 -
Z 4000 T & Eslots = 100 1
3500 - '
3000 0
0 5 10 15 20 25 30 35 40 45 50 55 6(0 5 10 15 20 25 30 35 40 45 50 55 60
Generations Generations
(c) All Individuals (d) Best 50 of 1000 individuals
3800 Les91 650 Lse 91
50 + EConf
. 3300 + EConf . = Estd
4] - EStd ‘ ESlots
2 . $ 50
2 800 ESlots RO '§
“6 - . e
° S 350
& 2300 £
[5 1 5 250
3 LA z
Z 1800 ,
150 '
1300 : 50

0 10 20 30 40 5 0 5 10 15 20 25 30 35 40 45 50

Generations

(e) All Individuals

Generations

(f) Best 50 of 1 individuals

Fig. 5: The total number of the exam selection grammar
components in each generation, the data in the graphs on
the left hand side is collected from all individuals exist in
each generation, in (b) the data is collected from the best
25 individuals out of 1000 shown in (a), in (d) the data is
collected from the best 50 individuals out of 1000 shown in
(d), in (f) the data is collected from the best 25 individuals
out of 1000 shown in (e).

[10] E. K. Burke, B. McCollum, A. Meisels, S. Petrovic, and
R. Qu, “A graph-based hyper-heuristic for educational timetabling
problems,” European Journal of Operational Research, vol.
176, no. 1, pp. 177-192, January 2007. [Online]. Available:
http://ideas.repec.org/a/eee/ejores/v176y2007i1p177-192.html

[11] L. D. Gaspero and A. Schaerf, “Tabu search techniques for examina-
tion timetabling,” in PATAT, ser. Lecture Notes in Computer Science,
E. K. Burke and W. Erben, Eds., vol. 2079. Springer, 2000, pp.
104-117.

[12] G. Kendall and N. M. Hussin, “An investigation of a tabu search
based hyper-heuristic for examination timetabling,” in Multidisci-
plinary Scheduling: Theory and Applications. Springer, 2005, pp.
309-328.

[13] H. Terashima-Marin, P. Ross, and M. Valenzuela-Rendon, “Evolution
of constraint satisfaction strategies in examination timetabling,” in
Proceedings of the Genetic and Evolutionary Computation Conference,
vol. 1. Orlando, Florida, USA: Morgan Kaufmann, 13-17 July 1999,
pp. 635-642.

[14] J. R. Koza, Genetic Programming: On the Programming of Computers
by Means of Natural Selection. Cambridge, MA, USA: MIT Press,
1992.

[15] W. B. and R. Poli, Foundations

Langdon of Genetic

1500 Tre 92 7 Tre 92
1400 1 - SBLock 60 4~ !
é 1300 4 . 5 = SCoast é 50
2 1200 T SLBusy =
“f 100 | : sMBusy G © !
% 1000 k é 0
3 900 |) ER o
800 | Ve 10 CSBlock - SCoast
700 ‘ o o SLBusy - SMBusy

0 5 10 15 20 25 30 35 40 45 50 55 60 6! 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

Generations Generations

(@) (b)
2000 York 83 160 York 83
1800 + SBLock 140
15 = SCoast & 120 -
o o
1600 .
S SLBusy S w0 1,
= SMBus “ Lot
© 1400 v O g0 |i:
8 8
g 1200 £ &0
z 1, . 2 4 .
1000 ¢ 2 - SBlock = SCoast
SLBusy SMBusy
800 —) 0
0 5 10 15 20 25 30 35 40 45 50 55 6(0 5 10 15 20 25 30 35 40 45 50 55 60
Generations Generations
(© ()
1200 Les 91 160 Lse 91
1100 140 - .
+ SBLock
o o
$ 1000 { 120 -
3 SCoast 3 et
S 900 | SLBusy S0 | e
= Py
S 800 SMBusy S 80
8 2
700
e g 60
2 600 ER)

+ SBLock = SCoast
SLBusy - SMBusy

500 §* 20
400 0
0 5 10 15 20 25 30 35 40 45 50 5!

0 5 10 15 20 25 30 35 40 45 50

Generations Generations

(e) ®

Fig. 6: The total number of the slot selection heuristics in
each generation, the data in the graphs on the left is collected
from all individuals exist in each generation, in (b) the data
is collected from the best 25 individuals out of 1000 shown
in (a), in (d) the data is collected from the best 50 individuals
out of 1000 shown in (d), in (f) the data is collected from
the best 25 individuals out of 1000 shown in (e).

Programming. Springer-Verlag, 2002. [Online]. Available:
http://www.cs.ucl.ac.uk/staff/W.Langdon/FOGP/

[16] R. Poli, W. B. Langdon, and N. F. McPhee, A field guide to
genetic programming. Published via http://lulu.com and
freely available at http://www.gp-field-guide.org.uk,
2008. [Online]. Available: http://www.gp-field-guide.org.uk

[17] M. B. Bader-El-Den and R. Poli, “Generating sat local-search heuris-
tics using a gp hyper-heuristic framework,” in Artificial Evolution,
ser. Lecture Notes in Computer Science, N. Monmarché, E.-G. Talbi,
P. Collet, M. Schoenauer, and E. Lutton, Eds., vol. 4926. Springer,
2007, pp. 37-49.

[18] R. E. Keller and R. Poli, “Self-adaptive hyperheuristic and greedy
search,” in 2008 IEEE World Congress on Computational Intelligence,
J. Wang, Ed., IEEE Computational Intelligence Society. Hong Kong:
IEEE Press, 1-6 Jun. 2008.

[19] M. W. Carter, G. Laporte, and S. Y. Lee, “Examination timetabling:
Algorithmic strategies and,” Journal of Operational Research Society,
vol. 47, pp. 73-83, 1996.

[20] S. Abdullah, S. Ahmadi, E. K. Burke, and M. Dror, “Investigating
ahuja-orlin’s large neighbourhood search for examination timetabling,”
Tech. Rep., 2004.

[21] E. K. Burke and J. P. Newall, “Enhancing timetable solutions with local
search methods,” in PATAT, ser. Lecture Notes in Computer Science,

650 Sta 83 360 Hec 92
600 310
o
S $ 260 -
B ss0 3
3 —ROBam & 210
© 500 °
é —First Exan é 160
450 —
E E o RO Slot
2 =z
400 6 —First Slot
350 10 - -
0 5 10 15 20 25 30 35 40 45 5(0 5 10 15 20 25 30 35 40 45 50
Generations Generations
(@) (®
400 York 83 800 4 York 83
700 -
350
é 9 600 -
S 300 B
2 2 s00
s Pt
S 250 & S 400
8 o £ 300
§ w0 ROExa/\m/\\ £
_ E —ROExam
= 15p | —FintEam 200 §
RO Slot 100 —First Exam
—First Slot
100 0
0 5 10 15 20 25 30 35 40 45 5(0 10 20 30 40 50 60 70 80 90 100
Generations Generations
© ()
900 York 83 50 York 83
800 45
» 700 ., 40
° S 35
! 600 3
Z 50 —ROExam Z 30 -
° —FirstBxar O 25
g 400 3
2 8 2
5 300 s
Z 200 | Z 0
100 - 5
0 - : 0

0 10 20 30 40 50 60 70 80 90 10(0 10 20 30 40 50 60 70 80 90 100

Generations Generations

(e) ®

Fig. 7: A comparison between the total count of the grammar
random and first selection nodes in all the individualise
through out the generations. (a) 1000 individuals and 50
generation, (b) 500 individuals and 50 generation, (c) 500
individuals and 60 generation, (d) 1000 individuals and 100
generation, (e) 1000 individuals and 100 generation, (f) best
50 individuals out of 1000 and 100 generation.

E. K. Burke and P. D. Causmaecker, Eds., vol. 2740. Springer, 2002,
pp. 195-206.

[22] E. Burke, Y. Bykov, J. Newall, and S. Petrovic, “A time-
predefined local search approach to exam timetabling problems,”
IIE Transactions, vol. 36, no. 6, pp. 509-528, Jun 2004. [Online].
Available: http://www.asap.cs.nott.ac.uk/publications/pdf/Tpls.pdf

[23] M. Caramia, P. Dell’Olmo, and G. F. Italiano, “New algorithms
for examination timetabling,” in WAE ’00: Proceedings of the 4th
International Workshop on Algorithm Engineering. — London, UK:
Springer-Verlag, 2001, pp. 230-242.

[24] S. Casey and J. Thompson, “Grasping the examination scheduling
problem,” in PATAT, ser. Lecture Notes in Computer Science, E. K.
Burke and P. D. Causmaecker, Eds., vol. 2740. Springer, 2002, pp.
232-246.

[25] L. T. G. Merlot, N. Boland, B. D. Hughes, and P. J. Stuckey, “A
hybrid algorithm for the examination timetabling problem,” in PATAT,
ser. Lecture Notes in Computer Science, E. K. Burke and P. D.
Causmaecker, Eds., vol. 2740. Springer, 2002, pp. 207-231.

[26] E. K. Burke and P. D. Causmaecker, Eds., Practice and Theory of
Automated Timetabling IV, 4th International Conference, PATAT 2002,
Gent, Belgium, August 21-23, 2002, Selected Revised Papers, ser.
Lecture Notes in Computer Science, vol. 2740. Springer, 2003.

